Augmentation quotients for complex representation rings of dihedral groups

Shan Chang , Hong Chen , Guoping Tang

Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 1 -18.

PDF (197KB)
Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 1 -18. DOI: 10.1007/s11464-011-0162-5
Research Article
RESEARCH ARTICLE

Augmentation quotients for complex representation rings of dihedral groups

Author information +
History +
PDF (197KB)

Abstract

Denote by Dm the dihedral group of order 2m. Let ℛ(Dm) be its complex representation ring, and let Δ(Dm) be its augmentation ideal. In this paper, we determine the isomorphism class of the n-th augmentation quotient Δn(Dm)/Δn+1(Dm) for each positive integer n.

Keywords

dihedral group / representation / augmentation quotient

Cite this article

Download citation ▾
Shan Chang, Hong Chen, Guoping Tang. Augmentation quotients for complex representation rings of dihedral groups. Front. Math. China, 2011, 7(1): 1-18 DOI:10.1007/s11464-011-0162-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bachman F., Grunenfelder L. The periodicity in the graded ring associated with an integral group ring. J Pure Appl Algebra, 1974, 5: 253-264

[2]

Curtis C. W., Reiner I. Representation Theory of Finite Groups and Associative Algebras, 2006, Providence: AMS Chelsea Publishing

[3]

Chang S., Tang Guoping. A basis for augmentation quotients of finite abelian groups. J Algebra, 2011, 327: 466-488

[4]

Karpilovsky G. Commutative Group Algebras. Monographs and Textbooks in Pure and Applied Mathematics, Vol 78, 1983, New York: Marcel Dekker

[5]

Magurn B. A. An Algebraic Introduction to K-Theory, 2002, Cambridge: Cambridge University Press

[6]

Serre J. -P. Linear Representations of Finite Groups. Graduate Texts in Mathematics, Vol 42, 1977, New York: Springer-Verlag

AI Summary AI Mindmap
PDF (197KB)

976

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/