Construction of a class of multivariate compactly supported wavelet bases for L2(ℝd)

Fengying Zhou , Yunzhang Li

Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 177 -195.

PDF (210KB)
Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 177 -195. DOI: 10.1007/s11464-011-0161-6
Research Article
RESEARCH ARTICLE

Construction of a class of multivariate compactly supported wavelet bases for L2(ℝd)

Author information +
History +
PDF (210KB)

Abstract

In this paper, for a given d×d expansive matrix M with |detM| = 2, we investigate the compactly supported M-wavelets for L2(ℝd). Starting with a pair of compactly supported refinable functions ϕ and $\tilde \varphi $ satisfying a mild condition, we obtain an explicit construction of a compactly supported wavelet ψ such that {2j/2ψ(Mj · −k): j ∈ ℤ, k ∈ ℤd} forms a Riesz basis for L2(ℝd). The (anti-)symmetry of such ψ is studied, and some examples are also provided.

Keywords

Riesz basis / wavelet / refinable function

Cite this article

Download citation ▾
Fengying Zhou, Yunzhang Li. Construction of a class of multivariate compactly supported wavelet bases for L2(ℝd). Front. Math. China, 2011, 7(1): 177-195 DOI:10.1007/s11464-011-0161-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

de Boor C., DeVore R. A., Ron A. On the construction of multivariate (pre)wavelets. Constr Approx, 1993, 9(2–3): 123-166

[2]

Bownik M. Intersection of dilates of shift-invariant spaces. Proc Amer Math Soc, 2009, 137(2): 563-572

[3]

Chui C. K. An Introduction to Wavelets, 1992, Boston: Academic Press

[4]

Chui C. K., Wang J. Z. A general framework of compactly supported splines and wavelets. J Approx Theory, 1992, 71(3): 263-304

[5]

Chui C. K., Wang J. Z. On compactly supported spline wavelets and a duality principle. Trans Amer Math Soc, 1992, 330(2): 903-915

[6]

Cohen A., Daubechies I. A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke Math J, 1992, 68(2): 313-335

[7]

Cohen A., Daubechies I., Feauveau J. C. Biorthogonal bases of compactly supported wavelets. Comm Pure Appl Math, 1992, 45(5): 485-560

[8]

Eugenio H., Weiss G. A First Course on Wavelets, 1996, Boca Raton: CRC Press

[9]

Huang Y. D., Yang S. Z., Cheng Z. X. The construction of a class of trivariate nonseparable compactly supported wavelets. Int J Wavelets Multiresolut Inf Process, 2009, 7(3): 255-267

[10]

Jia R. Q. Approximation properties of multivariate wavelets. Math Comp, 1998, 67(222): 647-665

[11]

Jia R. Q. Bessel sequences in Sobolev spaces. Appl Comput Harmon Anal, 2006, 20(2): 298-311

[12]

Jia R. Q., Lau K. S., Zhou D. X. Lp solutions of refinement equations. J Fourier Anal Appl, 2001, 7(2): 143-167

[13]

Jia R. Q., Micchelli C. A. Using the refinement equations for the construction of pre-wavelets, II Powers of two. Curves and Surfaces, 1991, Boston: Academic Press, 209-246

[14]

Jia R. Q., Wang J. Z., Zhou D. X. Compactly supported wavelet bases for Sobolev spaces. Appl Comput Harmon Anal, 2003, 15(3): 224-241

[15]

Li Y. Z. On the construction of a class of bidimensional nonseparable compactly supported wavelets. Proc Amer Math Soc, 2005, 133(12): 3505-3513

[16]

Long R. L. High Dimensional Wavelet Analysis, 1995, Beijing: World Book Publishing Corporation

[17]

Micchelli C. A. Using the refinement equation for the construction of pre-wavelets. Numer Algorithms, 1991, 1(1): 75-116

[18]

Rudin W. Functional Analysis, 1991, New York: McGraw-Hill, Inc

[19]

Schoenberg I. J. Cardinal Spline Interpolation, 1973, Philadelphia: SIAM

[20]

Villemoes L. F. Sobolev regularity of wavelets and stability of iterated filter banks. Progress in Wavelet Analysis and Applications, 1993, Gif-sur-Yvette: Frontières, 243-251

AI Summary AI Mindmap
PDF (210KB)

796

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/