Construction of a class of multivariate compactly supported wavelet bases for L2(?d)

Fengying ZHOU, Yunzhang LI

PDF(210 KB)
PDF(210 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (1) : 177-195. DOI: 10.1007/s11464-011-0161-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Construction of a class of multivariate compactly supported wavelet bases for L2(?d)

Author information +
History +

Abstract

In this paper, for a given d×d expansive matrix M with |det M| = 2, we investigate the compactly supported M-wavelets for L2(d). Starting with a pair of compactly supported refinable functions ϕ and ϕ ˜ satisfying a mild condition, we obtain an explicit construction of a compactly supported wavelet ψ such that {2j/2ψ(Mj·-k):j, kd} forms a Riesz basis for L2(d). The (anti-)symmetry of such ψ is studied, and some examples are also provided.

Keywords

Riesz basis / wavelet / refinable function

Cite this article

Download citation ▾
Fengying ZHOU, Yunzhang LI. Construction of a class of multivariate compactly supported wavelet bases for L2(d). Front Math Chin, 2012, 7(1): 177‒195 https://doi.org/10.1007/s11464-011-0161-6

References

[1]
de Boor C, DeVore R A, Ron A. On the construction of multivariate (pre)wavelets. Constr Approx, 1993, 9(2-3): 123-166
CrossRef Google scholar
[2]
Bownik M. Intersection of dilates of shift-invariant spaces. Proc Amer Math Soc, 2009, 137(2): 563-572
CrossRef Google scholar
[3]
Chui C K. An Introduction to Wavelets. Boston: Academic Press, 1992
[4]
Chui C K, Wang J Z. A general framework of compactly supported splines and wavelets. J Approx Theory, 1992, 71(3): 263-304
CrossRef Google scholar
[5]
Chui C K, Wang J Z. On compactly supported spline wavelets and a duality principle. Trans Amer Math Soc, 1992, 330(2): 903-915
CrossRef Google scholar
[6]
Cohen A, Daubechies I. A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke Math J, 1992, 68(2): 313-335
CrossRef Google scholar
[7]
Cohen A, Daubechies I, Feauveau J C. Biorthogonal bases of compactly supported wavelets. Comm Pure Appl Math, 1992, 45(5): 485-560
CrossRef Google scholar
[8]
Eugenio H, Weiss G. A First Course on Wavelets. Boca Raton: CRC Press, 1996
[9]
Huang Y D, Yang S Z, Cheng Z X. The construction of a class of trivariate nonseparable compactly supported wavelets. Int J Wavelets Multiresolut Inf Process, 2009, 7(3): 255-267
CrossRef Google scholar
[10]
Jia R Q. Approximation properties of multivariate wavelets. Math Comp, 1998, 67(222): 647-665
CrossRef Google scholar
[11]
Jia R Q. Bessel sequences in Sobolev spaces. Appl Comput Harmon Anal, 2006, 20(2): 298-311
CrossRef Google scholar
[12]
Jia R Q, Lau K S, Zhou D X. Lp solutions of refinement equations. J Fourier Anal Appl, 2001, 7(2): 143-167
CrossRef Google scholar
[13]
Jia R Q, Micchelli C A. Using the refinement equations for the construction of pre-wavelets, II Powers of two. In: Curves and Surfaces. Boston: Academic Press, 1991, 209-246
[14]
Jia R Q, Wang J Z, Zhou D X. Compactly supported wavelet bases for Sobolev spaces. Appl Comput Harmon Anal, 2003, 15(3): 224-241
CrossRef Google scholar
[15]
Li Y Z. On the construction of a class of bidimensional nonseparable compactly supported wavelets. Proc Amer Math Soc, 2005, 133(12): 3505-3513
CrossRef Google scholar
[16]
Long R L, High Dimensional Wavelet Analysis. Beijing: World Book Publishing Corporation, 1995 (in Chinese)
[17]
Micchelli C A. Using the refinement equation for the construction of pre-wavelets. Numer Algorithms, 1991, 1(1): 75-116
CrossRef Google scholar
[18]
Rudin W. Functional Analysis. New York: McGraw-Hill, Inc, 1991
[19]
Schoenberg I J. Cardinal Spline Interpolation. Philadelphia: SIAM, 1973
CrossRef Google scholar
[20]
Villemoes L F. Sobolev regularity of wavelets and stability of iterated filter banks. In: Progress in Wavelet Analysis and Applications. Gif-sur-Yvette: Fronti`eres, 1993, 243-251

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(210 KB)

Accesses

Citations

Detail

Sections
Recommended

/