J-dendriform algebras

Dongping Hou , Chengming Bai

Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 29 -49.

PDF (207KB)
Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 29 -49. DOI: 10.1007/s11464-011-0160-7
Research Article
RESEARCH ARTICLE

J-dendriform algebras

Author information +
History +
PDF (207KB)

Abstract

In this paper, we introduce a notion of J-dendriform algebra with two operations as a Jordan algebraic analogue of a dendriform algebra such that the anticommutator of the sum of the two operations is a Jordan algebra. A dendriform algebra is a J-dendriform algebra. Moreover, J-dendriform algebras fit into a commutative diagram which extends the relationships among associative, Lie, and Jordan algebras. Their relations with some structures such as Rota-Baxter operators, classical Yang-Baxter equation, and bilinear forms are given.

Keywords

Jordan algebra / dendriform algebra / $\mathcal{O}$-operator / classical Yang-Baxter equation (CYBE)

Cite this article

Download citation ▾
Dongping Hou, Chengming Bai. J-dendriform algebras. Front. Math. China, 2011, 7(1): 29-49 DOI:10.1007/s11464-011-0160-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguiar M. Pre-Poisson algebras. Lett Math Phys, 2000, 54: 263-277

[2]

Aguiar M., Loday J. -L. Quadri-algebras. J Pure Appl Algebra, 2004, 191: 205-221

[3]

Albert A. A. On a certain algebra of quantum mechanics. Ann Math, 1934, 35: 65-73

[4]

Albert A. A. A structure theory for Jordan algebras. Ann Math, 1947, 48: 446-467

[5]

Bai C. M. A unified algebraic approach to the classical Yang-Baxter equation. J Phys A: Math Theor, 2007, 40: 11073-11082

[6]

Bai C. M. O-operators of Loday algebras and analogues of the classical Yang-Baxter equation. Comm Algebra, 2010, 38: 4277-4321

[7]

Bai C. M., Liu L. G., Ni X. Some results on L-dendriform algebras. J Geom Phys, 2010, 60: 940-950

[8]

Baxter G. An analytic problem whose solution follows from a simple algebraic identity. Pacific J Math, 1960, 10: 731-742

[9]

Burde D. Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Cent Eur J Math, 2006, 4: 323-357

[10]

Chapoton F. Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces. J Pure Appl Algebra, 2002, 168: 1-18

[11]

Chari V., Pressley A. A Guide to Quantum Groups, 1994, Cambridge: Cambridge University Press

[12]

Chu B. Y. Symplectic homogeneous spaces. Trans Amer Math Soc, 1974, 197: 145-159

[13]

Ebrahimi-Fard K., Guo L. On products and duality of binary, quadratic, regular operads. J Pure Appl Algebra, 2005, 200: 293-317

[14]

Foissy L. Les algèbres de Hopf des arbres enracinés décorés II. Bull Sci Math, 2002, 126: 249-288

[15]

Frabetti A. Dialgebra homology of associative algebras. C R Acad Sci Paris, 1997, 325: 135-140

[16]

Frabetti A. Leibniz homology of dialgebras of matrices. J Pure Appl Algebra, 1998, 129: 123-141

[17]

Golubschik I. Z., Sokolov V. V. Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras. J Nonlinear Math Phys, 2000, 7: 184-197

[18]

Guo L. What is a Rota-Baxter algebra. Notice Amer Math Soc, 2009, 56: 1436-1437

[19]

Guo L. An Introduction to Rota-Baxter Algebra. http://andromeda.rutgers.edu/liguo/rbabook.pdf.

[20]

Hou D P, Ni X, Bai C M. Pre-Jordan algebras. Math Scand (to appear)

[21]

Iordanescu R. Jordan structures in geometry and physics, 2003, Bucarest: Editura Academiei Romane

[22]

Jacobson N. Lie and Jordan triple systems. Amer J Math, 1949, 71: 149-170

[23]

Jacobson N. Structure and Representation of Jordan Algebras, 1968, Providence: Amer Math Soc

[24]

Kaup W., Zaitsev D. On symmetric Cauchy-Riemann manifolds. Adv Math, 2000, 149: 145-181

[25]

Koecher M. Imbedding of Jordan algebras into Lie algebras I. Amer J Math, 1967, 89: 787-816

[26]

Koecher M. Jordan algebras and differential geometry. Actes Congrès Intern Math, 1970, 1: 279-283

[27]

Kupershmidt B. A. What a classical r-matrix really is. J Nonlinear Math Phys, 1999, 6: 448-488

[28]

Loday J. -L. Dialgebras, in Dialgebras and related operads. Lect Notes Math, 2002, 1763: 7-66

[29]

Loday J. -L. Arithmetree. J Algebra, 2002, 258: 275-309

[30]

Loday J. -L. Scindement d’associativité et algèbres de Hopf. Proceedings of the Conference in Honor of Jean Leray, Nantes, 2002, 2004, 9: 155-172

[31]

Loday J. -L., Ronco M. Hopf algebra of the planar binary trees. Adv Math, 1998, 139: 293-309

[32]

Loday J. -L., Ronco M. Algèbre de Hopf colibres. C R Acad Sci Paris, 2003, 337: 153-158

[33]

Ronco M. Primitive elements in a free dendriform algebra. Comtep Math, 2000, 267: 245-263

[34]

Rota G. -C. Baxter algebras and combinatorial identities I. Bull Amer Math Soc, 1969, 75: 325-329

[35]

Semenov-Tian-Shansky M. A. What is a classical R-matrix?. Funct Anal Appl, 1983, 17: 259-272

[36]

Upmeier H. Jordan algebras and harmonic analysis on symmetric spaces. Amer J Math, 1986, 108: 1-25

[37]

Vallette B. Manin products, Koszul duality, Loday algebras and Deligne conjecture. J Reine Angew Math, 2008, 620: 105-164

[38]

Zhelyabin V. N. Jordan bialgebras and their connection with Lie bialgebras. Algebra i Logika, 1997, 36: 3-35

[39]

Zhelyabin V. N. On a class of Jordan D-bialgebras. Algebra i Analiz, 1999, 11(4): 64-94

[40]

Zhelyabin V. N. Jordan D-bialgebras and symplectic form on Jordan algebras. Siberian Adv Math, 2000, 10(2): 142-150

AI Summary AI Mindmap
PDF (207KB)

1084

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/