![](/develop/static/imgs/pdf.png)
J-dendriform algebras
Dongping HOU, Chengming BAI
J-dendriform algebras
In this paper, we introduce a notion of J-dendriform algebra with two operations as a Jordan algebraic analogue of a dendriform algebra such that the anticommutator of the sum of the two operations is a Jordan algebra. A dendriform algebra is a J-dendriform algebra. Moreover, J-dendriform algebras fit into a commutative diagram which extends the relationships among associative, Lie, and Jordan algebras. Their relations with some structures such as Rota-Baxter operators, classical Yang-Baxter equation, and bilinear forms are given.
Jordan algebra / dendriform algebra / O-operator / classical Yang-Baxter equation (CYBE)
[1] |
Aguiar M. Pre-Poisson algebras. Lett Math Phys, 2000, 54: 263-277
CrossRef
Google scholar
|
[2] |
Aguiar M, Loday J -L. Quadri-algebras. J Pure Appl Algebra, 2004, 191: 205-221
CrossRef
Google scholar
|
[3] |
Albert A A. On a certain algebra of quantum mechanics. Ann Math, 1934, 35: 65-73
CrossRef
Google scholar
|
[4] |
Albert A A. A structure theory for Jordan algebras. Ann Math, 1947, 48: 446-467
CrossRef
Google scholar
|
[5] |
Bai C M. A unified algebraic approach to the classical Yang-Baxter equation. J Phys A: Math Theor, 2007, 40: 11073-11082
CrossRef
Google scholar
|
[6] |
Bai C M. O-operators of Loday algebras and analogues of the classical Yang-Baxter equation. Comm Algebra, 2010, 38: 4277-4321
CrossRef
Google scholar
|
[7] |
Bai C M, Liu L G, Ni X. Some results on L-dendriform algebras. J Geom Phys, 2010, 60: 940-950
CrossRef
Google scholar
|
[8] |
Baxter G. An analytic problem whose solution follows from a simple algebraic identity. Pacific J Math, 1960, 10: 731-742
|
[9] |
Burde D. Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Cent Eur J Math, 2006, 4: 323-357
CrossRef
Google scholar
|
[10] |
Chapoton F. Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces. J Pure Appl Algebra, 2002, 168: 1-18
CrossRef
Google scholar
|
[11] |
Chari V, Pressley A. A Guide to Quantum Groups. Cambridge: Cambridge University Press, 1994
|
[12] |
Chu B Y. Symplectic homogeneous spaces. Trans Amer Math Soc, 1974, 197: 145-159
CrossRef
Google scholar
|
[13] |
Ebrahimi-Fard K, Guo L. On products and duality of binary, quadratic, regular operads. J Pure Appl Algebra, 2005, 200: 293-317
CrossRef
Google scholar
|
[14] |
Foissy L. Les algèbres de Hopf des arbres enracinés décorés II. Bull Sci Math, 2002, 126: 249-288
CrossRef
Google scholar
|
[15] |
Frabetti A. Dialgebra homology of associative algebras. C R Acad Sci Paris, 1997, 325: 135-140
|
[16] |
Frabetti A. Leibniz homology of dialgebras of matrices. J Pure Appl Algebra, 1998, 129: 123-141
CrossRef
Google scholar
|
[17] |
Golubschik I Z, Sokolov V V. Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras. J Nonlinear Math Phys, 2000, 7: 184-197
CrossRef
Google scholar
|
[18] |
Guo L. What is a Rota-Baxter algebra. Notice Amer Math Soc, 2009, 56: 1436-1437
|
[19] |
Guo L. An Introduction to Rota-Baxter Algebra. http://andromeda.rutgers.edu/ liguo/rbabook.pdf.
|
[20] |
Hou D P, Ni X, Bai C M. Pre-Jordan algebras. Math Scand (to appear)
|
[21] |
Iordanescu R. Jordan structures in geometry and physics. Bucarest: Editura Academiei Romane, 2003
|
[22] |
Jacobson N. Lie and Jordan triple systems. Amer J Math, 1949, 71: 149-170
CrossRef
Google scholar
|
[23] |
Jacobson N. Structure and Representation of Jordan Algebras. Amer Math Soc Colloq Publ, 39. Providence: Amer Math Soc, 1968
|
[24] |
Kaup W, Zaitsev D. On symmetric Cauchy-Riemann manifolds. Adv Math, 2000, 149: 145-181
CrossRef
Google scholar
|
[25] |
Koecher M. Imbedding of Jordan algebras into Lie algebras I. Amer J Math, 1967, 89: 787-816
CrossRef
Google scholar
|
[26] |
Koecher M. Jordan algebras and differential geometry. Actes Congrès Intern Math, 1970, 1: 279-283
|
[27] |
Kupershmidt B A. What a classical r-matrix really is. J Nonlinear Math Phys, 1999, 6: 448-488
CrossRef
Google scholar
|
[28] |
Loday J -L. Dialgebras, in Dialgebras and related operads. Lect Notes Math, 2002, 1763: 7-66
|
[29] |
Loday J -L. Arithmetree. J Algebra, 2002, 258: 275-309
CrossRef
Google scholar
|
[30] |
Loday J -L. Scindement d’associativité et algèbres de Hopf. In: Proceedings of the Conference in Honor of Jean Leray, Nantes, 2002. Séminaire et Congrès (SMF), 2004, 9: 155-172
|
[31] |
Loday J -L, Ronco M. Hopf algebra of the planar binary trees. Adv Math, 1998, 139: 293-309
CrossRef
Google scholar
|
[32] |
Loday J -L, Ronco M. Algèbre de Hopf colibres. C R Acad Sci Paris, 2003, 337: 153-158
CrossRef
Google scholar
|
[33] |
Ronco M. Primitive elements in a free dendriform algebra. Comtep Math, 2000, 267: 245-263
|
[34] |
Rota G -C. Baxter algebras and combinatorial identities I. Bull Amer Math Soc, 1969, 75: 325-329
CrossRef
Google scholar
|
[35] |
Semenov-Tian-Shansky M A. What is a classical R-matrix? Funct Anal Appl, 1983, 17: 259-272
CrossRef
Google scholar
|
[36] |
Upmeier H. Jordan algebras and harmonic analysis on symmetric spaces. Amer J Math, 1986, 108: 1-25
CrossRef
Google scholar
|
[37] |
Vallette B. Manin products, Koszul duality, Loday algebras and Deligne conjecture. J Reine Angew Math, 2008, 620: 105-164
CrossRef
Google scholar
|
[38] |
Zhelyabin V N. Jordan bialgebras and their connection with Lie bialgebras. Algebra i Logika, 1997, 36: 3-35 (in Russian); Algebra and Logic, 1997, 36: 1-15 (in English)
CrossRef
Google scholar
|
[39] |
Zhelyabin V N. On a class of Jordan D-bialgebras. Algebra i Analiz, 1999, 11(4): 64-94 (in Russian); St Petersburg Math J, 2000, 11(4): 589-609 (in English)
|
[40] |
Zhelyabin V N. Jordan D-bialgebras and symplectic form on Jordan algebras. Siberian Adv Math, 2000, 10(2): 142-150
|
/
〈 |
|
〉 |