Growth and distortion theorems on subclasses of quasi-convex mappings in several complex variables
Jianfei Wang , Taishun Liu , Jin Lu
Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 931 -944.
Growth and distortion theorems on subclasses of quasi-convex mappings in several complex variables
In this paper, the refining growth and covering theorems for f are established, where f is a quasi-convex mapping of order α and x = 0 is a zero of order k + 1 of f(x) − x. As an application, we obtain the upper and lower bounds on the distortion theorem of f(x) defined on the unit polydisc of ℂ n. The upper bound of the distortion theorem for f(x) defined on the unit ball of a complex Banach space is also given. Our results extend the growth and distortion theorems for convex functions of one complex variable to quasi-convex mappings of several complex variables.
Quasi-convex mapping / growth theorem / covering theorem / distortion theorem / zero of order k + 1
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
/
| 〈 |
|
〉 |