Nonexistence of block-transitive 6-designs
Jing CHEN, Weijun LIU
Nonexistence of block-transitive 6-designs
In this paper, we prove that there are no nontrivial block-transitive 6-designs for k≤100. This supports the long-standing conjecture of Cameron and Praeger that there are no nontrivial block-transitive 6-designs.
Cameron-Praeger conjecture / block-transitive design / affine group / almost simple group
[1] |
Beth T, Jungnickel D, Lenz H. Design Theory. Cambridge: Cambridge University Press, 1993
|
[2] |
Cameron P J, Omidi G R, Tayfeh-Rezaie B. 3-Designs from PGL(2, q). Electron J Combin, 2006, 13, # R50
|
[3] |
Cameron P J, Praeger C E. Block-transitive designs I: point-imprimitive Designs. Discrete Math, 1993, 118: 33-43
CrossRef
Google scholar
|
[4] |
Cameron P J, Praeger C E. Block-transitive t-designs, II: large t. In: De Clerck F,
|
[5] |
Huber M. On the Cameron-Praeger Conjecture. J Combin Theory Ser A, 2010, 117: 196-203
CrossRef
Google scholar
|
[6] |
Hughes D R, Poper F C. Design Theory. Cambridge: Cambridge University Press, 1985
CrossRef
Google scholar
|
[7] |
Kramer E S, Mesner D M. t-Designs on hypergrphs. Discrete Math, 1976, 15: 263-296
CrossRef
Google scholar
|
[8] |
Omidi G R, Pournaki M R, Tayfeh-kezaie B. 3-Designs with block size 6 from PSL(2, q) and their large sets. Discrete Math, 2007, 307: 1580-1588
CrossRef
Google scholar
|
[9] |
Ray-Chaudhuri D K, Wilson R M. On t-designs. Osaka J Math, 1975, 12: 737-744
|
[10] |
van Leijenhorst D C. Orbits on the projective line. J Combin Theory Ser A, 1981, 31: 146-154
CrossRef
Google scholar
|
/
〈 | 〉 |