Coquasitriangular Hopf group coalgebras and braided monoidal categories

Meiling Zhu , Huixiang Chen , Libin Li

Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 1009 -1020.

PDF (111KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 1009 -1020. DOI: 10.1007/s11464-011-0152-7
Research Article
RESEARCH ARTICLE

Coquasitriangular Hopf group coalgebras and braided monoidal categories

Author information +
History +
PDF (111KB)

Abstract

Let π be a group, and let H be a Hopf π-coalgebra. We first show that the category M H of right π-comodules over H is a monoidal category and there is a monoidal endofunctor (F α, id, id) of M H for any απ. Then we give the definition of coquasitriangular Hopf π-coalgebras. Finally, we show that H is a coquasitriangular Hopf π-coalgebra if and only if M H is a braided monoidal category and (F α, id, id) is a braided monoidal endofunctor of M H for any απ.

Keywords

H-π-comodule / braided monoidal category / braided monoidal functor

Cite this article

Download citation ▾
Meiling Zhu, Huixiang Chen, Libin Li. Coquasitriangular Hopf group coalgebras and braided monoidal categories. Front. Math. China, 2011, 6(5): 1009-1020 DOI:10.1007/s11464-011-0152-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen H. X. Cocycle deformations, braided monoidal categories and quasitriangularity. Chinese Sci Bull, 1999, 44 6 510-513

[2]

Drinfeld V. G. Quantum groups. Proc ICM, 1986, Vol 1, 1987, Providence: Am Math Soc 798-820

[3]

Kassel C. Quantum Groups, 1995, New York: Springer-Verlag.

[4]

Montgomery S. Hopf Algebras and Their Actions on Rings, 1993, Providence: Am Math Soc.

[5]

Radford D. E. On the antipode of a quasitriangular Hopf algebra. J Algebra, 1992, 151, 1-11

[6]

Sweedler M. E. Hopf Algebras, 1969, New York: Benjamin.

[7]

Turaev V G. Homotopy field theory in dimension 3 and crossed group-categories. Preprint, GT/0005291v1

[8]

Virelizier A. Hopf group-coalgebras. J Pure Appl Algebra, 2002, 171 1 75-122

[9]

Wang S. H. Coquasitriangular Hopf group algebras and Drinfeld codoubles. Commun Algebra, 2007, 35, 1-25

AI Summary AI Mindmap
PDF (111KB)

798

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/