Coquasitriangular Hopf group coalgebras and braided monoidal categories
Meiling ZHU, Huixiang CHEN, Libin LI
Coquasitriangular Hopf group coalgebras and braided monoidal categories
Let π be a group, and let H be a Hopf π-coalgebra. We first show that the category of right π-comodules over H is a monoidal category and there is a monoidal endofunctor (Fα, id, id) of for any . Then we give the definition of coquasitriangular Hopf π-coalgebras. Finally, we show that H is a coquasitriangular Hopf π-coalgebra if and only if is a braided monoidal category and (Fα, id, id) is a braided monoidal endofunctor of for any .
H-π-comodule / braided monoidal category / braided monoidal functor
[1] |
Chen H X. Cocycle deformations, braided monoidal categories and quasitriangularity. Chinese Sci Bull, 1999, 44(6): 510-513
|
[2] |
Drinfeld V G. Quantum groups. In: Proc ICM, 1986, Vol 1. Providence: Am Math Soc, 1987, 798-820
|
[3] |
Kassel C. Quantum Groups. New York: Springer-Verlag, 1995
|
[4] |
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS series in Math, Vol 82. Providence: Am Math Soc, 1993
|
[5] |
Radford D E. On the antipode of a quasitriangular Hopf algebra. J Algebra, 1992, 151: 1-11
CrossRef
Google scholar
|
[6] |
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
|
[7] |
Turaev V G. Homotopy field theory in dimension 3 and crossed group-categories. Preprint, <patent>GT/0005291v1</patent>
|
[8] |
Virelizier A. Hopf group-coalgebras. J Pure Appl Algebra, 2002, 171(1): 75-122
CrossRef
Google scholar
|
[9] |
Wang S H. Coquasitriangular Hopf group algebras and Drinfeld codoubles. Commun Algebra, 2007, 35: 1-25
|
/
〈 | 〉 |