Coquasitriangular Hopf group coalgebras and braided monoidal categories

Meiling ZHU, Huixiang CHEN, Libin LI

PDF(111 KB)
PDF(111 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 1009-1020. DOI: 10.1007/s11464-011-0152-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Coquasitriangular Hopf group coalgebras and braided monoidal categories

Author information +
History +

Abstract

Let π be a group, and let H be a Hopf π-coalgebra. We first show that the category H of right π-comodules over H is a monoidal category and there is a monoidal endofunctor (Fα, id, id) of H for any απ. Then we give the definition of coquasitriangular Hopf π-coalgebras. Finally, we show that H is a coquasitriangular Hopf π-coalgebra if and only if H is a braided monoidal category and (Fα, id, id) is a braided monoidal endofunctor of H for any απ.

Keywords

H-π-comodule / braided monoidal category / braided monoidal functor

Cite this article

Download citation ▾
Meiling ZHU, Huixiang CHEN, Libin LI. Coquasitriangular Hopf group coalgebras and braided monoidal categories. Front Math Chin, 2011, 6(5): 1009‒1020 https://doi.org/10.1007/s11464-011-0152-7

References

[1]
Chen H X. Cocycle deformations, braided monoidal categories and quasitriangularity. Chinese Sci Bull, 1999, 44(6): 510-513
[2]
Drinfeld V G. Quantum groups. In: Proc ICM, 1986, Vol 1. Providence: Am Math Soc, 1987, 798-820
[3]
Kassel C. Quantum Groups. New York: Springer-Verlag, 1995
[4]
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS series in Math, Vol 82. Providence: Am Math Soc, 1993
[5]
Radford D E. On the antipode of a quasitriangular Hopf algebra. J Algebra, 1992, 151: 1-11
CrossRef Google scholar
[6]
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
[7]
Turaev V G. Homotopy field theory in dimension 3 and crossed group-categories. Preprint, <patent>GT/0005291v1</patent>
[8]
Virelizier A. Hopf group-coalgebras. J Pure Appl Algebra, 2002, 171(1): 75-122
CrossRef Google scholar
[9]
Wang S H. Coquasitriangular Hopf group algebras and Drinfeld codoubles. Commun Algebra, 2007, 35: 1-25

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(111 KB)

Accesses

Citations

Detail

Sections
Recommended

/