Ring of invariants of general linear group over local ring $\mathbb{Z}_{p^m } $

Jizhu Nan , Yin Chen

Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 887 -899.

PDF (128KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 887 -899. DOI: 10.1007/s11464-011-0151-8
Research Article
RESEARCH ARTICLE

Ring of invariants of general linear group over local ring $\mathbb{Z}_{p^m } $

Author information +
History +
PDF (128KB)

Abstract

Let $\mathbb{Z}_{p^m } $ be the ring of integers modulo p m, where p is a prime and m ⩾ 1. The general linear group GL n($\mathbb{Z}_{p^m } $) acts naturally on the polynomial algebra A n:= $\mathbb{Z}_{p^m } $[x 1, …, x n]. Denote by $A_n^{GL_2 (\mathbb{Z}_{p^m } )} $ the corresponding ring of invariants. The purpose of the present paper is to calculate this invariant ring. Our results also generalize the classical Dickson’s theorem.

Keywords

Dickson’s theorem / invariant / finite local ring

Cite this article

Download citation ▾
Jizhu Nan, Yin Chen. Ring of invariants of general linear group over local ring $\mathbb{Z}_{p^m } $. Front. Math. China, 2011, 6(5): 887-899 DOI:10.1007/s11464-011-0151-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benson D. Polynomial Invariants of Finite Groups, 1993, Cambridge: Cambridge University Press

[2]

Chen Y. Modular Invariants of Finite Classical Groups, 2009, Dalian: Dalian University of Technology.

[3]

Derksen H., Kemper G. Computatinal Invariant Theory, 2002, Berlin: Springer-Verlag.

[4]

Dickson L. E. A fundamental system of invariants of the general modular linear group with a solution of the form problem. Trans Am Math Soc, 1911, 12, 75-98

[5]

Hu S. J., Kang M. C. Efficient generation of the ring of invariants. J Algebra, 1996, 180, 341-363

[6]

Mead D. G. Generators for the algebra of symmetric polynomials. Am Math Monthly, 1993, 100, 391-397

[7]

Nan J., Chen Y. Rational invariants of certain classical similitude groups over finite fields. Indiana Univ Math J, 2008, 57 4 1947-1957

[8]

Neusel M. D. Invariant Theory, 2006, Providence: Am Math Soc.

[9]

Richman D. Explicit generators of the invariants of finite groups. Adv Math, 1996, 124, 49-76

[10]

Smith L. Polynomial Invariants of Finite Groups, 1995, Natick: A K Peters, Ltd.

[11]

Smith L. Polynomial invariants of finite groups: a survey of recent developments. Bull of Am Math Soc, 1997, 34 3 211-250

[12]

Wilkerson C. A primer on the Dickson invariants. Contemp Math, 1983, 19, 421-434

AI Summary AI Mindmap
PDF (128KB)

736

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/