Ring of invariants of general linear group over local ring $\mathbb{Z}_{p^m } $
Jizhu Nan , Yin Chen
Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 887 -899.
Ring of invariants of general linear group over local ring $\mathbb{Z}_{p^m } $
Let $\mathbb{Z}_{p^m } $ be the ring of integers modulo p m, where p is a prime and m ⩾ 1. The general linear group GL n($\mathbb{Z}_{p^m } $) acts naturally on the polynomial algebra A n:= $\mathbb{Z}_{p^m } $[x 1, …, x n]. Denote by $A_n^{GL_2 (\mathbb{Z}_{p^m } )} $ the corresponding ring of invariants. The purpose of the present paper is to calculate this invariant ring. Our results also generalize the classical Dickson’s theorem.
Dickson’s theorem / invariant / finite local ring
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
/
| 〈 |
|
〉 |