Cluster characters for cyclic quivers

Ming Ding, Fan Xu

Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 679-693.

PDF(185 KB)
PDF(185 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 679-693. DOI: 10.1007/s11464-011-0146-5
Research Article
RESEARCH ARTICLE

Cluster characters for cyclic quivers

Author information +
History +

Abstract

We define an analogue of the Caldero-Chapoton map for the cluster category of finite-dimensional nilpotent representations over a cyclic quiver. We prove that it is a cluster character and satisfies some inductive formulas for the multiplication between the generalized cluster variables (the images of objects of the cluster category under this map). Moreover, we construct a ℤ-basis for the algebra generated by all generalized cluster variables.

Keywords

Cyclic quiver / cluster algebra / ℤ-basis

Cite this article

Download citation ▾
Ming Ding, Fan Xu. Cluster characters for cyclic quivers. Front. Math. China, 2012, 7(4): 679‒693 https://doi.org/10.1007/s11464-011-0146-5

References

[1.]
Buan A., Marsh R., Reineke M., Reiten I., Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204: 572-618
CrossRef Google scholar
[2.]
Buan A., Marsh R., Vatne D. Cluster structure from 2-Calabi-Yau categories with loops. Math Z, 2010, 265(4): 951-970
CrossRef Google scholar
[3.]
Caldero P., Chapoton F. Cluster algebras as Hall algebras of quiver representations. Comm Math Helv, 2006, 81: 595-616
CrossRef Google scholar
[4.]
Caldero P., Keller B. From triangulated categories to cluster algebras. Invent Math, 2008, 172(1): 169-211
CrossRef Google scholar
[5.]
Ding M, Xiao J, Xu F. Integral bases of cluster algebras and representations of tame quivers. Algebr Represent Theor (to appear). DOI 10.1007/s10468-011-9317-z. ArXiv:0901.1937 [math.RT]
[6.]
Fomin S., Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc, 2002, 15(2): 497-529
CrossRef Google scholar
[7.]
Keller B. On triangulated orbit categories. Documenta Math, 2005, 10: 551-581
[8.]
Marsh R., Reineke M., Zelevinsky A. Generalized associahedra via quiver representations. Trans Amer Math Soc, 2003, 355(1): 4171-4186
CrossRef Google scholar
[9.]
Palu Y. Cluster characters for 2-Calabi-Yau triangulated categories. Ann Inst Fourier, 2008, 58(6): 2221-2248
CrossRef Google scholar
[10.]
Ringel C. M. Tame Algebras and Integral Quadratic Forms, 1984, Berlin: Springer
[11.]
Xiao J, Xu F. Green's formula with ℂ*-action and Caldero-Keller's formula. Prog Math (to appear)
[12.]
Zhou Y, Zhu B. Cluster algebras of type C via cluster tubes. ArXiv: 1008.3444v1 [math.RT]
AI Summary AI Mindmap
PDF(185 KB)

Accesses

Citations

Detail

Sections
Recommended

/