Cluster characters for cyclic quivers

Ming Ding , Fan Xu

Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 679 -693.

PDF (185KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 679 -693. DOI: 10.1007/s11464-011-0146-5
Research Article
RESEARCH ARTICLE

Cluster characters for cyclic quivers

Author information +
History +
PDF (185KB)

Abstract

We define an analogue of the Caldero-Chapoton map for the cluster category of finite-dimensional nilpotent representations over a cyclic quiver. We prove that it is a cluster character and satisfies some inductive formulas for the multiplication between the generalized cluster variables (the images of objects of the cluster category under this map). Moreover, we construct a ℤ-basis for the algebra generated by all generalized cluster variables.

Keywords

Cyclic quiver / cluster algebra / ℤ-basis

Cite this article

Download citation ▾
Ming Ding, Fan Xu. Cluster characters for cyclic quivers. Front. Math. China, 2012, 7(4): 679-693 DOI:10.1007/s11464-011-0146-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Buan A., Marsh R., Reineke M., Reiten I., Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204: 572-618

[2]

Buan A., Marsh R., Vatne D. Cluster structure from 2-Calabi-Yau categories with loops. Math Z, 2010, 265(4): 951-970

[3]

Caldero P., Chapoton F. Cluster algebras as Hall algebras of quiver representations. Comm Math Helv, 2006, 81: 595-616

[4]

Caldero P., Keller B. From triangulated categories to cluster algebras. Invent Math, 2008, 172(1): 169-211

[5]

Ding M, Xiao J, Xu F. Integral bases of cluster algebras and representations of tame quivers. Algebr Represent Theor (to appear). DOI 10.1007/s10468-011-9317-z. ArXiv:0901.1937 [math.RT]

[6]

Fomin S., Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc, 2002, 15(2): 497-529

[7]

Keller B. On triangulated orbit categories. Documenta Math, 2005, 10: 551-581

[8]

Marsh R., Reineke M., Zelevinsky A. Generalized associahedra via quiver representations. Trans Amer Math Soc, 2003, 355(1): 4171-4186

[9]

Palu Y. Cluster characters for 2-Calabi-Yau triangulated categories. Ann Inst Fourier, 2008, 58(6): 2221-2248

[10]

Ringel C. M. Tame Algebras and Integral Quadratic Forms, 1984, Berlin: Springer

[11]

Xiao J, Xu F. Green's formula with ℂ*-action and Caldero-Keller's formula. Prog Math (to appear)

[12]

Zhou Y, Zhu B. Cluster algebras of type C via cluster tubes. ArXiv: 1008.3444v1 [math.RT]

AI Summary AI Mindmap
PDF (185KB)

855

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/