Cluster characters for cyclic quivers

Ming DING, Fan XU

PDF(185 KB)
PDF(185 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 679-693. DOI: 10.1007/s11464-011-0146-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Cluster characters for cyclic quivers

Author information +
History +

Abstract

We define an analogue of the Caldero-Chapoton map for the cluster category of finite-dimensional nilpotent representations over a cyclic quiver. We prove that it is a cluster character and satisfies some inductive formulas for the multiplication between the generalized cluster variables (the images of objects of the cluster category under this map). Moreover, we construct a -basis for the algebra generated by all generalized cluster variables.

Keywords

Cyclic quiver / cluster algebra / -basis

Cite this article

Download citation ▾
Ming DING, Fan XU. Cluster characters for cyclic quivers. Front Math Chin, 2012, 7(4): 679‒693 https://doi.org/10.1007/s11464-011-0146-5

References

[1]
Buan A, Marsh R, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204: 572-618
CrossRef Google scholar
[2]
Buan A, Marsh R, Vatne D. Cluster structure from 2-Calabi-Yau categories with loops. Math Z, 2010, 265(4): 951-970
CrossRef Google scholar
[3]
Caldero P, Chapoton F. Cluster algebras as Hall algebras of quiver representations. Comm Math Helv, 2006, 81: 595-616
CrossRef Google scholar
[4]
Caldero P, Keller B. From triangulated categories to cluster algebras. Invent Math, 2008, 172(1): 169-211
CrossRef Google scholar
[5]
Ding M, Xiao J, Xu F. Integral bases of cluster algebras and representations of tame quivers. Algebr Represent Theor (to appear). ArXiv: 0901.1937 [math.RT]
CrossRef Google scholar
[6]
Fomin S, Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc, 2002, 15(2): 497-529
CrossRef Google scholar
[7]
Keller B. On triangulated orbit categories. Documenta Math, 2005, 10: 551-581
[8]
Marsh R, Reineke M, Zelevinsky A. Generalized associahedra via quiver representations. Trans Amer Math Soc, 2003, 355(1): 4171-4186
CrossRef Google scholar
[9]
Palu Y. Cluster characters for 2-Calabi–Yau triangulated categories. Ann Inst Fourier, 2008, 58(6): 2221-2248
CrossRef Google scholar
[10]
Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, Vol 1099. Berlin: Springer, 1984
[11]
Xiao J, Xu F. Green’s formula with ℂ*-action and Caldero-Keller’s formula. Prog Math (to appear)
[12]
Zhou Y, Zhu B. Cluster algebras of type C via cluster tubes. ArXiv: 1008.3444v1 [math.RT]

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(185 KB)

Accesses

Citations

Detail

Sections
Recommended

/