Cluster characters for cyclic quivers
Ming DING, Fan XU
Cluster characters for cyclic quivers
We define an analogue of the Caldero-Chapoton map for the cluster category of finite-dimensional nilpotent representations over a cyclic quiver. We prove that it is a cluster character and satisfies some inductive formulas for the multiplication between the generalized cluster variables (the images of objects of the cluster category under this map). Moreover, we construct a -basis for the algebra generated by all generalized cluster variables.
Cyclic quiver /
cluster algebra /
[1] |
Buan A, Marsh R, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204: 572-618
CrossRef
Google scholar
|
[2] |
Buan A, Marsh R, Vatne D. Cluster structure from 2-Calabi-Yau categories with loops. Math Z, 2010, 265(4): 951-970
CrossRef
Google scholar
|
[3] |
Caldero P, Chapoton F. Cluster algebras as Hall algebras of quiver representations. Comm Math Helv, 2006, 81: 595-616
CrossRef
Google scholar
|
[4] |
Caldero P, Keller B. From triangulated categories to cluster algebras. Invent Math, 2008, 172(1): 169-211
CrossRef
Google scholar
|
[5] |
Ding M, Xiao J, Xu F. Integral bases of cluster algebras and representations of tame quivers. Algebr Represent Theor (to appear). ArXiv: 0901.1937 [math.RT]
CrossRef
Google scholar
|
[6] |
Fomin S, Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc, 2002, 15(2): 497-529
CrossRef
Google scholar
|
[7] |
Keller B. On triangulated orbit categories. Documenta Math, 2005, 10: 551-581
|
[8] |
Marsh R, Reineke M, Zelevinsky A. Generalized associahedra via quiver representations. Trans Amer Math Soc, 2003, 355(1): 4171-4186
CrossRef
Google scholar
|
[9] |
Palu Y. Cluster characters for 2-Calabi–Yau triangulated categories. Ann Inst Fourier, 2008, 58(6): 2221-2248
CrossRef
Google scholar
|
[10] |
Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, Vol 1099. Berlin: Springer, 1984
|
[11] |
Xiao J, Xu F. Green’s formula with
|
[12] |
Zhou Y, Zhu B. Cluster algebras of type C via cluster tubes. ArXiv: 1008.3444v1 [math.RT]
|
/
〈 | 〉 |