Associating quantum vertex algebras to deformed Heisenberg Lie algebras

Haisheng Li

Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 707-730.

PDF(260 KB)
Front. Math. China All Journals
PDF(260 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 707-730. DOI: 10.1007/s11464-011-0144-7
Research Article
RESEARCH ARTICLE

Associating quantum vertex algebras to deformed Heisenberg Lie algebras

Author information +
History +

Abstract

We associate quantum vertex algebras and their ϕ-coordinated quasi modules to certain deformed Heisenberg algebras.

Keywords

quantum vertex algebra / deformed Heisenberg Lie algebra / ϕ-coordinated module

Cite this article

Download citation ▾
Haisheng Li. Associating quantum vertex algebras to deformed Heisenberg Lie algebras. Front. Math. China, 2011, 6(4): 707‒730 https://doi.org/10.1007/s11464-011-0144-7
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Bouwknegt P., Pilch K. The deformed Virasoro algebra at roots of unity. Commun Math Phys, 1998, 196, 249-288
CrossRef Google scholar
[2.]
Etingof P., Frenkel I., Kirillov A. Jr. Lectures on Representation Theory and Knizhnik-Zamolodchikov Equations, 1998, Providence: AMS.
[3.]
Etingof P., Kazhdan D. Quantization of Lie bialgebras, V. Selecta Mathematica, New Series, 2000, 6, 105-130
CrossRef Google scholar
[4.]
Frenkel E., Reshetikhin N. Quantum affine algebras and deformations of the Virasoro and W-algebra. Commun Math Phys, 1996, 178, 237-264
CrossRef Google scholar
[5.]
Frenkel I. B., Jing N. -H. Vertex representations of quantum affine algebras. Proc Natl Acad Sci USA, 1988, 85, 9373-9377
CrossRef Google scholar
[6.]
Frenkel I. B., Zhu Y. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math J, 1992, 66, 123-168
CrossRef Google scholar
[7.]
Golenishcheva-Kutuzova M., Kac V. Π-conformal algebras. J Math Phys, 1998, 39, 2290-2305
CrossRef Google scholar
[8.]
Golenishcheva-Kutuzova M., Lebedev D. Vertex operator representation of some quantum tori Lie algebras. Commun Math Phys, 1992, 148, 403-416
CrossRef Google scholar
[9.]
Karel M., Li H. -S. Some quantum vertex algebras of Zamolodchikov-Faddeev type. Commun Contemp Math, 2009, 11, 829-863
CrossRef Google scholar
[10.]
Lepowsky J., Li H. -S. Introduction to Vertex Operator Algebras and Their Representations, 2003, Boston: Birkhäuser.
[11.]
Li H. -S. Local systems of vertex operators, vertex superalgebras and modules. J Pure Appl Alg, 1996, 109, 143-195
CrossRef Google scholar
[12.]
Li H. -S. Nonlocal vertex algebras generated by formal vertex operators. Selecta Mathematica, New Series, 2005, 11, 349-397
CrossRef Google scholar
[13.]
Li H. -S. Constructing quantum vertex algebras. Int J Math, 2006, 17, 441-476
CrossRef Google scholar
[14.]
Li H. -S. A new construction of vertex algebras and quasi modules for vertex algebras. Adv Math, 2006, 202, 232-286
CrossRef Google scholar
[15.]
Li H -S. Quantum vertex algebras and their ϕ-coordinated modules. arXiv: 0906.2710 [math.QA]
AI Summary AI Mindmap
PDF(260 KB)

743

Accesses

2

Citations

Detail

Sections
Recommended

/