On Lefschetz series

Xu’an Zhao , Hongzhu Gao

Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 1003 -1008.

PDF (89KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 1003 -1008. DOI: 10.1007/s11464-011-0142-9
Research Article
RESEARCH ARTICLE

On Lefschetz series

Author information +
History +
PDF (89KB)

Abstract

Let R = ⊕ i=0 R i be a connected graded commutative algebra over the field ℚ of rational numbers, and let f be a graded endomorphism of R. In this paper, we show that the Lefschetz series of f can be computed directly from the induced linear map Q(f) on the ℚ vector space of indecomposables of R. We give an explicit algorithm to compute the Lefschetz series of f from Q(f). The main tool we used is the graded algebra version of Gröbner basis theory. At the end of this paper, some examples and applications are given.

Keywords

Lefschetz series / Gröbner basis / endomorphism of graded algebra

Cite this article

Download citation ▾
Xu’an Zhao, Hongzhu Gao. On Lefschetz series. Front. Math. China, 2011, 6(5): 1003-1008 DOI:10.1007/s11464-011-0142-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Duan Haibao. The Lefschetz number of self-maps of Lie groups. Proc Am Math Soc, 1988, 104 4 1284-1286

[2]

Duan Haibao. A characteristic polynomial for self-maps of H-spaces. Quart J Math Oxford Ser, 1993, 44 2 315-325

[3]

Duan Haibao. The Lefschetz numbers of iterated maps. Topology Appl, 1995, 67 1 71-79

[4]

Glover H., Homer W. Endomorphisms of the cohomology ring of finite Grassmann manifolds. Geometric applications of homotopy theory (Proc Conf, Evanston, Ill, 1977), 1978, Berlin: Springer 170-193

[5]

Hoffman M. Endomorphisms of the cohomology of complex Grassmannians. Trans Am Math Soc, 1984, 281 2 745-760

[6]

Zhao X.-an. Cohomology endomorphisms of flag manifolds. Acta Math Sinica (Chin Ser), 2001, 44 6 1099-1106

AI Summary AI Mindmap
PDF (89KB)

697

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/