F-Willmore submanifold in space forms

Jin Liu , Huaiyu Jian

Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 871 -886.

PDF (131KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 871 -886. DOI: 10.1007/s11464-011-0140-y
Research Article
RESEARCH ARTICLE

F-Willmore submanifold in space forms

Author information +
History +
PDF (131KB)

Abstract

We introduce an F-Willmore functional of submanifold in space forms, which generalizes the well-known Willmore functional. Its critical point is called the F-Willmore submanifold, for which the variational equation and Simons’ type integral inequality are obtained.

Keywords

Mean curvature / Willmore submanifold / Simons’ type integral inequality

Cite this article

Download citation ▾
Jin Liu, Huaiyu Jian. F-Willmore submanifold in space forms. Front. Math. China, 2011, 6(5): 871-886 DOI:10.1007/s11464-011-0140-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cai M. L p Willmore functionals. Proc Am Math Soc, 1999, 127, 569-575

[2]

Chen B. Y. Some conformal invariants of submanifolds and their applications. Boll Un Math Ital, 1974, 10, 380-385

[3]

Chern S. S. Minimal Submanifolds in a Riemannian Manifold, 1968, Lawrence: University of Kansas.

[4]

Chern S. S., do Carmo M., Kobayashi S. Browder F. E. Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields, 1970, Berlin: Springer-Verlag 59-75

[5]

Guo Z., Li H. Z., Wang C. P. The second variation of formula for Willmore submanifolds in S n. Results in Math, 2001, 40, 205-225

[6]

Hu Z. J., Li H. Z. Bokan N., Djorić M., Fomenko A. T., Rakić Z., Wess J. Willmore submanifolds in Riemannian manifolds. Proceedings of the Workshop, Contem Geom and Related Topics, Belgrade, Yugoslavia, May 15–21, 2002, 2011, Singapore: World Scientific 251-275

[7]

Huisken G. Flow by mean curvature of convex surfaces in to spheres. J Differ Geom, 1984, 20, 237-266

[8]

Li H. Z. Willmore submanifolds in a sphere. Math Research Letters, 2002, 9, 771-790

[9]

Li H. Z., Simon U. Quantization of curvature for compact surfaces in a sphere. Math Z, 2003, 245, 201-216

[10]

Pedit F J, Willmore T J. Conformal geometry. Atti Sem Mat Fis UnivModena XXXVI, 1988, 237–245

[11]

Rigoli M., Salavessa I. M. Willmore submanifolds of the Möbius space and a Bernsteintype theorem. Manuscripta Math, 1993, 81, 203-222

[12]

Willmore T. J. Total Curvature in Riemannian Geometry, 1982, New York: Ellis Horwood Ltd.

[13]

Willmore T. J. Riemannian Geometry, 1993, Oxford: Oxford Science Pub, Clarendon Press.

AI Summary AI Mindmap
PDF (131KB)

932

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/