Parafermion vertex operator algebras

Chongying Dong, Qing Wang

Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 567-579.

PDF(197 KB)
Front. Math. China All Journals
PDF(197 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 567-579. DOI: 10.1007/s11464-011-0138-5
Survey Article
SURVEY ARTICLE

Parafermion vertex operator algebras

Author information +
History +

Abstract

This paper reviews some recent results on the parafermion vertex operator algebra associated to the integrable highest weight module L(k, 0) of positive integer level k for any affine Kac-Moody Lie algebra ĝ, where g is a finite dimensional simple Lie algebra. In particular, the generators and the C 2-cofiniteness of the parafermion vertex operator algebras are discussed. A proof of the well-known fact that the parafermion vertex operator algebra can be realized as the commutant of a lattice vertex operator algebra in L(k, 0) is also given.

Keywords

Parafermion vertex operator algebra / C 2-cofinite

Cite this article

Download citation ▾
Chongying Dong, Qing Wang. Parafermion vertex operator algebras. Front. Math. China, 2011, 6(4): 567‒579 https://doi.org/10.1007/s11464-011-0138-5
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Abe T., Buhl G., Dong C. Rationality, regularity and C 2-cofiniteness. Trans Am Math Soc, 2004, 356, 3391-3402
CrossRef Google scholar
[2.]
Blumenhagen R., Eholzer W., Honecker A., Hornfeck K., Hübel R. Coset realization of unifying W-algebras. Inter J Mod Phys A, 1995, 10, 2367-2430
CrossRef Google scholar
[3.]
Borcherds R. Vertex algebras, Kac-Moody algebras, and the Monster. Proc Natl Acad Sci USA, 1986, 83, 3068-3071
CrossRef Google scholar
[4.]
Dong C. Vertex algebras associated with even lattices. J Algebra, 1993, 160, 245-265
CrossRef Google scholar
[5.]
Dong C., Griess R. Jr Automorphism groups and derivation algebras of finitely generated vertex operator algebras. Michigan Math J, 2002, 50, 227-239
CrossRef Google scholar
[6.]
Dong C., Griess R. Jr Hoehn G. Framed vertex operator algebras, codes and the moonshine module. Commun Math Phys, 1998, 193, 407-448
CrossRef Google scholar
[7.]
Dong C., Lam C. H., Wang Q., Yamada H. The structure of parafermion vertex operator algebras. J Algebra, 2010, 323, 371-381
CrossRef Google scholar
[8.]
Dong C, Lam C H, Yamada H. W-algebras in lattice vertex operator algebras. In: Doebner H -D, Dobrev V K, eds. Lie Theory and Its Applications in Physics VII. Proc of the VII International Workshop, Varna, Bulgaria, 2007. Bulgarian J Phys, 2008, 35(suppl): 25–35
[9.]
Dong C., Lam C. H., Yamada H. W-algebras related to parafermion algebras. J Algebra, 2009, 322, 2366-2403
CrossRef Google scholar
[10.]
Dong C., Lepowsky J. Generalized Vertex Algebras and Relative Vertex Operators. Progress in Math, Vol 112, 1993, Boston: Birkhäuser.
[11.]
Dong C., Li H., Mason G. Regularity of rational vertex operator algebra. Adv Math, 1997, 312, 148-166
CrossRef Google scholar
[12.]
Dong C., Li H., Mason G. Twisted representations of vertex operator algebras. Math Ann, 1998, 310, 571-600
CrossRef Google scholar
[13.]
Dong C., Li H., Mason G. Modular invariance of trace functions in orbifold theory and generalized moonshine. Commun Math Phys, 2000, 214, 1-56
CrossRef Google scholar
[14.]
Dong C., Li H., Mason G., Norton S. P. Ferrar J., Harada K. Associative subalgebras of Griess algebra and related topics. Proc Conf Monster and Lie Algebras, Ohio State University, May 1996, 1998, Berlin: de Gruyter.
[15.]
Dong C., Wang Q. The structure of parafermion vertex operator algebras: general case. Commun Math Phys, 2010, 299, 783-792
CrossRef Google scholar
[16.]
Dong C., Wang Q. On C 2-cofiniteness of parafermion vertex operator algebras. J Algebra, 2011, 328, 420-431
CrossRef Google scholar
[17.]
Dong C., Zhang W. Rational vertex operator algebras are finitely generated. J Algebra, 2008, 320, 2610-2614
CrossRef Google scholar
[18.]
Frenkel I., Kac V. Basic representations of affine Lie algebras and dual resonance models. Invent Math, 1980, 62, 23-66
CrossRef Google scholar
[19.]
Frenkel I., Lepowsky J., Meurman A. Vertex Operator Algebras and the Monster. Pure and Applied Math, Vol 134, 1988, Boston: Academic Press.
[20.]
Frenkel I., Zhu Y. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math J, 1992, 66, 123-168
CrossRef Google scholar
[21.]
Gaberdiel M., Neitzke A. Rationality, quasirationality, and finite W-algebras. Commun Math Phys, 2003, 238, 147-194
[22.]
Gepner D. New conformal field theory associated with Lie algebras and their partition functions. Nucl Phys B, 1987, 290, 10-24
CrossRef Google scholar
[23.]
Goddard P., Kent A., Olive D. Unitary representations of the Virasoro and super-Virasoro algebras. Commun Math Phys, 1986, 103, 105-119
CrossRef Google scholar
[24.]
Kac V. G. Infinite-dimensional Lie Algebras, 1990, 3rd ed., Cambridge: Cambridge University Press
CrossRef Google scholar
[25.]
Lepowsky J., Li H. Introduction to Vertex Operator Algebras and Their Representations. Progress in Math, Vol 227, 2004, Boston: Birkhäuser
CrossRef Google scholar
[26.]
Lepowsky J., Primc M. Structure of the Standard Modules for the Affine Lie Algebra A 1 (1). Contemporary Math, Vol 46, 1985, Providence: Am Math Soc.
[27.]
Lepowsky J., Wilson R. L. A new family of algebras underlying the Rogers-Ramanujan identities and generalizations. Proc Natl Acad Sci USA, 1981, 78, 7245-7248
CrossRef Google scholar
[28.]
Lepowsky J., Wilson R. L. The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities. Invent Math, 1984, 77, 199-290
CrossRef Google scholar
[29.]
Li H. Some finiteness properties of regular vertex operator algebras. J Algebra, 1999, 212, 495-514
CrossRef Google scholar
[30.]
Meurman A., Primc M. Vertex operator algebras and representations of affine Lie algebras. Acta Appl Math, 1996, 44, 207-215
CrossRef Google scholar
[31.]
Segal G. Unitary representations of some infinite-dimensional groups. Commun Math Phys, 1981, 80, 301-342
CrossRef Google scholar
[32.]
Wang W. Rationality of Virasoro vertex operator algebras. Inter Math Res Not, 1993, 7, 197-211
CrossRef Google scholar
[33.]
Zamolodchikov A. B., Fateev V. A. Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in ZN-symmetric statistical systems. Sov Phys JETP, 1985, 62, 215-225
[34.]
Zhu Y. Modular Invariance of characters of vertex operator algebras. J Am Math Soc, 1996, 9, 237-302
CrossRef Google scholar
AI Summary AI Mindmap
PDF(197 KB)

846

Accesses

12

Citations

Detail

Sections
Recommended

/