Parafermion vertex operator algebras

Chongying Dong , Qing Wang

Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 567 -579.

PDF (197KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 567 -579. DOI: 10.1007/s11464-011-0138-5
Survey Article
SURVEY ARTICLE

Parafermion vertex operator algebras

Author information +
History +
PDF (197KB)

Abstract

This paper reviews some recent results on the parafermion vertex operator algebra associated to the integrable highest weight module L(k, 0) of positive integer level k for any affine Kac-Moody Lie algebra ĝ, where g is a finite dimensional simple Lie algebra. In particular, the generators and the C 2-cofiniteness of the parafermion vertex operator algebras are discussed. A proof of the well-known fact that the parafermion vertex operator algebra can be realized as the commutant of a lattice vertex operator algebra in L(k, 0) is also given.

Keywords

Parafermion vertex operator algebra / C 2-cofinite

Cite this article

Download citation ▾
Chongying Dong, Qing Wang. Parafermion vertex operator algebras. Front. Math. China, 2011, 6(4): 567-579 DOI:10.1007/s11464-011-0138-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe T., Buhl G., Dong C. Rationality, regularity and C 2-cofiniteness. Trans Am Math Soc, 2004, 356, 3391-3402

[2]

Blumenhagen R., Eholzer W., Honecker A., Hornfeck K., Hübel R. Coset realization of unifying W-algebras. Inter J Mod Phys A, 1995, 10, 2367-2430

[3]

Borcherds R. Vertex algebras, Kac-Moody algebras, and the Monster. Proc Natl Acad Sci USA, 1986, 83, 3068-3071

[4]

Dong C. Vertex algebras associated with even lattices. J Algebra, 1993, 160, 245-265

[5]

Dong C., Griess R. Jr Automorphism groups and derivation algebras of finitely generated vertex operator algebras. Michigan Math J, 2002, 50, 227-239

[6]

Dong C., Griess R. Jr Hoehn G. Framed vertex operator algebras, codes and the moonshine module. Commun Math Phys, 1998, 193, 407-448

[7]

Dong C., Lam C. H., Wang Q., Yamada H. The structure of parafermion vertex operator algebras. J Algebra, 2010, 323, 371-381

[8]

Dong C, Lam C H, Yamada H. W-algebras in lattice vertex operator algebras. In: Doebner H -D, Dobrev V K, eds. Lie Theory and Its Applications in Physics VII. Proc of the VII International Workshop, Varna, Bulgaria, 2007. Bulgarian J Phys, 2008, 35(suppl): 25–35

[9]

Dong C., Lam C. H., Yamada H. W-algebras related to parafermion algebras. J Algebra, 2009, 322, 2366-2403

[10]

Dong C., Lepowsky J. Generalized Vertex Algebras and Relative Vertex Operators. Progress in Math, Vol 112, 1993, Boston: Birkhäuser.

[11]

Dong C., Li H., Mason G. Regularity of rational vertex operator algebra. Adv Math, 1997, 312, 148-166

[12]

Dong C., Li H., Mason G. Twisted representations of vertex operator algebras. Math Ann, 1998, 310, 571-600

[13]

Dong C., Li H., Mason G. Modular invariance of trace functions in orbifold theory and generalized moonshine. Commun Math Phys, 2000, 214, 1-56

[14]

Dong C., Li H., Mason G., Norton S. P. Ferrar J., Harada K. Associative subalgebras of Griess algebra and related topics. Proc Conf Monster and Lie Algebras, Ohio State University, May 1996, 1998, Berlin: de Gruyter.

[15]

Dong C., Wang Q. The structure of parafermion vertex operator algebras: general case. Commun Math Phys, 2010, 299, 783-792

[16]

Dong C., Wang Q. On C 2-cofiniteness of parafermion vertex operator algebras. J Algebra, 2011, 328, 420-431

[17]

Dong C., Zhang W. Rational vertex operator algebras are finitely generated. J Algebra, 2008, 320, 2610-2614

[18]

Frenkel I., Kac V. Basic representations of affine Lie algebras and dual resonance models. Invent Math, 1980, 62, 23-66

[19]

Frenkel I., Lepowsky J., Meurman A. Vertex Operator Algebras and the Monster. Pure and Applied Math, Vol 134, 1988, Boston: Academic Press.

[20]

Frenkel I., Zhu Y. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math J, 1992, 66, 123-168

[21]

Gaberdiel M., Neitzke A. Rationality, quasirationality, and finite W-algebras. Commun Math Phys, 2003, 238, 147-194

[22]

Gepner D. New conformal field theory associated with Lie algebras and their partition functions. Nucl Phys B, 1987, 290, 10-24

[23]

Goddard P., Kent A., Olive D. Unitary representations of the Virasoro and super-Virasoro algebras. Commun Math Phys, 1986, 103, 105-119

[24]

Kac V. G. Infinite-dimensional Lie Algebras, 1990, 3rd ed., Cambridge: Cambridge University Press

[25]

Lepowsky J., Li H. Introduction to Vertex Operator Algebras and Their Representations. Progress in Math, Vol 227, 2004, Boston: Birkhäuser

[26]

Lepowsky J., Primc M. Structure of the Standard Modules for the Affine Lie Algebra A 1 (1). Contemporary Math, Vol 46, 1985, Providence: Am Math Soc.

[27]

Lepowsky J., Wilson R. L. A new family of algebras underlying the Rogers-Ramanujan identities and generalizations. Proc Natl Acad Sci USA, 1981, 78, 7245-7248

[28]

Lepowsky J., Wilson R. L. The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities. Invent Math, 1984, 77, 199-290

[29]

Li H. Some finiteness properties of regular vertex operator algebras. J Algebra, 1999, 212, 495-514

[30]

Meurman A., Primc M. Vertex operator algebras and representations of affine Lie algebras. Acta Appl Math, 1996, 44, 207-215

[31]

Segal G. Unitary representations of some infinite-dimensional groups. Commun Math Phys, 1981, 80, 301-342

[32]

Wang W. Rationality of Virasoro vertex operator algebras. Inter Math Res Not, 1993, 7, 197-211

[33]

Zamolodchikov A. B., Fateev V. A. Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in ZN-symmetric statistical systems. Sov Phys JETP, 1985, 62, 215-225

[34]

Zhu Y. Modular Invariance of characters of vertex operator algebras. J Am Math Soc, 1996, 9, 237-302

AI Summary AI Mindmap
PDF (197KB)

1012

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/