Quantum superalgebras uq(sl(m|n)) at roots of unity

Jialei Chen , Shilin Yang

Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 607 -628.

PDF (247KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 607 -628. DOI: 10.1007/s11464-011-0136-7
Research Article
RESEARCH ARTICLE

Quantum superalgebras uq(sl(m|n)) at roots of unity

Author information +
History +
PDF (247KB)

Abstract

Finite dimensional Hopf superalgebras uq(sl(m|n)) corresponding to the Lie superalgebras sl(m|n) are constructed. The PBW type basis and the left and right integrals of uq(sl(m|n)) are obtained. Furthermore, the group of Hopf superalgebra automorphisms is described.

Keywords

Hopf superalgebra / PBW basis / automorphism group

Cite this article

Download citation ▾
Jialei Chen, Shilin Yang. Quantum superalgebras uq(sl(m|n)) at roots of unity. Front. Math. China, 2012, 7(4): 607-628 DOI:10.1007/s11464-011-0136-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnaudon D. On automorphisms and universal R-matrices at roots of unity. Lett Math Phys, 1995, 33: 39-47

[2]

Benkart G., Witherspoon S. Restricted two-parameter quantum groups. Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry. Fields Inst Commun, Vol 40, 2004, Providence: Am Math Soc, 293-318

[3]

Blumen S C. Quantum superalgebra at roots of unity and topological invariants of three-manifolds. arXiv/math: 0601170v1

[4]

Chen X., Yang S. Lusztig symmetries and automorphisms of quantum superalgebras Uq(osp(1|2r)). J Algebra Appl, 2010, 9: 725-762

[5]

Drinfeld V. G. Hopf algebras and the quantum Yang-Baxter equation. Soviet Math Dokl, 1985, 32: 264-269

[6]

Fischman D., Montgomery V. S., Schneider H. -J. Frobenius extensions of subalgebras of Hopf algebras. Trans Am Math Soc, 1997, 349: 4857-4895

[7]

Floreanini R., Spiridonov V. P., Vinet L. q-oscillator realizations of the quantum superalgebras slq(m, n) and ospq(m, 2n). Commun Math Phys, 1991, 137: 149-160

[8]

Frappat L., Sciarrino A., Sorba P. Structure of basic Lie superalgebras and of their affine extensions. Commun Math Phys, 1989, 121: 457-500

[9]

Gelaki S., Westreich S. On the quasitriangularity of Uq(sln)′. J London Math Soc, 1998, 57: 105-125

[10]

Gelaki S., Westreich S. Hopf algebras of types Uq(sln)′ and Oq(SLn)′ which give rise to certain invariants of knots, links and 3-manifolds. Trans Am Math Soc, 2000, 352: 3821-3836

[11]

Gould M. D., Zhang R. B., Bracken A. J. Quantum double construction for graded Hopf algebras. Bull Austr Math Soc, 1993, 47: 353-375

[12]

Hakobyan T. S., Sedrakyan A. G. Universal R-matrix of Uq(sl(n,m)) quantum superalgebras. J Math Phys, 1994, 35: 2552-2559

[13]

Hu N., Wang X. Convex PBW-type Lyndon basis and restricted two-parameter quantum groups of type G2. Pacific J Math, 2009, 241: 243-273

[14]

Hu N., Wang X. Convex PBW-type Lyndon bases and restricted two-parameter quantum groups of type B. J Geom Phys, 2010, 60: 430-453

[15]

Jantzen J. C. Lectures on Quantum Groups. Grad Stud in Math, Vol 6, 1995, Providence: Am Math Soc

[16]

Jimbo M. A q-difference analogue of U(g) and the Yang-Baxter equation. Lett Math Phys, 1985, 10: 63-69

[17]

Lusztig G. Finite dimensional Hopf algebras arising from quantized universal enveloping algebras. J Am Math Soc, 1990, 257–296

[18]

Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Conf Math Publ, Vol 82, 1993, Providence: Am Math Soc

[19]

Scheunert M. Serre-type relations for special linear Lie superalgebras. Lett Math Phys, 1992, 24: 173-181

[20]

Scheunert M. The presentation and q-deformation of special linear Lie superagebras. J Math Phys, 1993, 34: 3780-3808

[21]

Suter R. Modules over Uq(sl2). Commun Math Phys, 1994, 163: 359-393

[22]

Takeuchi M. Some topics on GLq(n). J Algebra, 1992, 147: 379-410

[23]

Zou Y. M. Deformations of enveloping algebra of Lie superalgebra sl(m, n). Commun Math Phys, 1994, 162: 467-479

AI Summary AI Mindmap
PDF (247KB)

959

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/