Exact boundary controllability of nodal profile for 1-D quasilinear wave equations

Ke WANG

PDF(151 KB)
PDF(151 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (3) : 545-555. DOI: 10.1007/s11464-011-0135-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Exact boundary controllability of nodal profile for 1-D quasilinear wave equations

Author information +
History +

Abstract

Based on the theory of semi-global C2 solution for 1-D quasilinear wave equations, the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations is obtained by a constructive method, and the corresponding global exact boundary controllability of nodal profile is also obtained under certain additional hypotheses.

Keywords

Quasilinear wave equation / quasilinear hyperbolic system / local exact boundary controllability of nodal profile / global exact boundary controllability of nodal profile

Cite this article

Download citation ▾
Ke WANG. Exact boundary controllability of nodal profile for 1-D quasilinear wave equations. Front Math Chin, 2011, 6(3): 545‒555 https://doi.org/10.1007/s11464-011-0135-8

References

[1]
Gugat M, Herty M, Schleper V. Flow control in gas networks: Exact controllability to a given demand. Math Meth Appl Sci, 2011, 34(7): 745-757
CrossRef Google scholar
[2]
Li Tatsien. Controllability and Observability for Quasilinear Hyperbolic Systems. AIMS Series on Applied Mathematics, Vol 3. Springfield & Beijing: American Institute of Mathematical Sciences & Higher Education Press, 2010
[3]
Li Tatsien. Exact boundary controllability of nodal profile for quasilinear hyperbolic systems. Math Meth Appl Sci, 2010, 33(17): 2101-2106
CrossRef Google scholar
[4]
Li Tatsien, Rao Bopeng. Local exact boundary controllability for a class of quasilinear hyperbolic systems. Chin Ann Math, Ser B, 2002, 23(2): 209-218
[5]
Li Tatsien, Rao Bopeng. Exact boundary controllability for quasilinear hyperbolic systems. SIAM J Control Optim, 2003, 41(6): 1748-1755
CrossRef Google scholar
[6]
Li Tatsien, Rao Bopeng. Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin Ann Math, Ser B, 2010, 31(5): 723-742
[7]
Li Tatsien, Yu Lixin. Exact boundary controllability for 1-D quasilinear wave equations. SIAM J Control Optim, 2006, 45(3): 1074-1083
CrossRef Google scholar
[8]
Li Tatsien, Yu Wenci. Boundary Value Problems for Quasilinear Hyperbolic Systems. Duke Univ Math Ser V. Duhurm: Duke University Press, 1985
[9]
Wang Ke. Global exact boundary controllability for 1-D quasilinear wave equations. Math Meth Appl Sci, 2011, 34(3): 315-324
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(151 KB)

Accesses

Citations

Detail

Sections
Recommended

/