Exact boundary controllability of nodal profile for 1-D quasilinear wave equations

Ke Wang

Front. Math. China ›› 2011, Vol. 6 ›› Issue (3) : 545 -555.

PDF (151KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (3) : 545 -555. DOI: 10.1007/s11464-011-0135-8
Research Article
RESEARCH ARTICLE

Exact boundary controllability of nodal profile for 1-D quasilinear wave equations

Author information +
History +
PDF (151KB)

Abstract

Based on the theory of semi-global C 2 solution for 1-D quasilinear wave equations, the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations is obtained by a constructive method, and the corresponding global exact boundary controllability of nodal profile is also obtained under certain additional hypotheses.

Keywords

Quasilinear wave equation / quasilinear hyperbolic system / local exact boundary controllability of nodal profile / global exact boundary controllability of nodal profile

Cite this article

Download citation ▾
Ke Wang. Exact boundary controllability of nodal profile for 1-D quasilinear wave equations. Front. Math. China, 2011, 6(3): 545-555 DOI:10.1007/s11464-011-0135-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gugat M., Herty M., Schleper V. Flow control in gas networks: Exact controllability to a given demand. Math Meth Appl Sci, 2011, 34 7 745-757

[2]

Li Tatsien. Controllability and Observability for Quasilinear Hyperbolic Systems. AIMS Series on Applied Mathematics, Vol 3, 2010, Springfield & Beijing: American Institute of Mathematical Sciences & Higher Education Press.

[3]

Li Tatsien. Exact boundary controllability of nodal profile for quasilinear hyperbolic systems. Math Meth Appl Sci, 2010, 33 17 2101-2106

[4]

Li T., Rao Bopeng. Local exact boundary controllability for a class of quasilinear hyperbolic systems. Chin Ann Math, Ser B, 2002, 23 2 209-218

[5]

Li T., Rao Bopeng. Exact boundary controllability for quasilinear hyperbolic systems. SIAM J Control Optim, 2003, 41 6 1748-1755

[6]

Li T., Rao Bopeng. Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin Ann Math, Ser B, 2010, 31 5 723-742

[7]

Li T., Yu Lixin. Exact boundary controllability for 1-D quasilinear wave equations. SIAM J Control Optim, 2006, 45 3 1074-1083

[8]

Li T., Yu Wenci. Boundary Value Problems for Quasilinear Hyperbolic Systems. Duke Univ Math Ser V, 1985, Duhurm: Duke University Press.

[9]

Wang Ke. Global exact boundary controllability for 1-D quasilinear wave equations. Math Meth Appl Sci, 2011, 34 3 315-324

AI Summary AI Mindmap
PDF (151KB)

829

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/