Support varieties of semisimple-character representations for Cartan type Lie algebras

Yufeng Yao, Bin Shu

Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 775-788.

PDF(198 KB)
Front. Math. China All Journals
PDF(198 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 775-788. DOI: 10.1007/s11464-011-0133-x
Research Article
RESEARCH ARTICLE

Support varieties of semisimple-character representations for Cartan type Lie algebras

Author information +
History +

Abstract

In this paper, we study the support varieties for Lie algebras L of Cartan type. We give some description for the support varieties of any finitedimensional L-module with character χ, whenever the height of the character χ is not too large. And a more concrete computation can be made for a class of modules with semisimple characters.

Keywords

Lie algebra of Cartan type / generalized restricted Lie algebra / support variety / semisimple character / exceptional module

Cite this article

Download citation ▾
Yufeng Yao, Bin Shu. Support varieties of semisimple-character representations for Cartan type Lie algebras. Front. Math. China, 2011, 6(4): 775‒788 https://doi.org/10.1007/s11464-011-0133-x
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Feldvoss J., Nakano D. Representation theory of the Witt algebra. J Algebra, 1998, 203, 447-469
CrossRef Google scholar
[2.]
Friedlander E., Parshall B. Geometry of p-unipotent Lie algebras. J Algebra, 1987, 109, 25-45
CrossRef Google scholar
[3.]
Friedlander E., Parshall B. Modular representation theory of Lie algebras. Am J Math, 1988, 110, 1055-1094
CrossRef Google scholar
[4.]
Hochschild G. Cohomology of restricted Lie algebras. Am J Math, 1954, 76, 555-580
CrossRef Google scholar
[5.]
Holmes R. R. Simple modules with character height at most one for the restricted Witt algebras. J Algebra, 2001, 237 2 446-469
CrossRef Google scholar
[6.]
Holmes R. R., Zhang C. W. Some simple modules for the restricted Cartan-type Lie algebras. J Pure Appl Algebra, 2002, 173, 135-165
CrossRef Google scholar
[7.]
Hu N. H. The graded modules for the graded contact Cartan algebras. Commun Algebra, 1994, 22 11 4475-4497
CrossRef Google scholar
[8.]
Jantzen J. C. Kohomologie von p-Lie algebren und nilpotente Elemente. Abh Math Sem Univ Hamburg, 1986, 56, 191-219
CrossRef Google scholar
[9.]
Kostrikin A. I., Šafarevič I. R. Graded Lie algebras of finite characteristic. Math USSR Izv, 1969, 3, 237-304
CrossRef Google scholar
[10.]
Lin Z. Z., Nakano D. Algebraic group actions in the cohomology theory of Lie algebras of Cartan type. J Algebra, 1996, 179, 852-888
CrossRef Google scholar
[11.]
Premet A. Irreducible representations of Lie algebras of reductive groups and the Kac-Weisfeiler conjecture. Invent Math, 1995, 121, 79-117
CrossRef Google scholar
[12.]
Premet A. Support varieties of non-restricted modules over Lie algebras of reductive groups. J London Math Soc, 1997, 55 2 236-250
CrossRef Google scholar
[13.]
Shen G. Y. Graded modules of graded Lie algebras of Cartan type III. Chinese Ann Math, Ser B, 1988, 9, 404-417
[14.]
Shu B. The realizations of primitive p-envelopes and the support varieties for graded Cartan type Lie algebras. Commun Algebra, 1997, 25 10 3209-3223
CrossRef Google scholar
[15.]
Shu B, Yao Y F. Irreducible modules of the generalized Jacobson-Witt algebras. Algebra Colloquium (to appear)
[16.]
Strade H., Farnsteiner R. Modular Lie Algebras and Their Representations, 1988, New York: Marcel Dekker.
[17.]
Wilson R. L. Automorphisms of graded Lie algebras of Cartan type. Commun Algebra, 1975, 3 7 591-613
CrossRef Google scholar
[18.]
Yao Y. F., Shu B. Irreducible representations of the special algebras in prime characteristic. Contemp Math, 2009, 478, 273-295
[19.]
Yao Y F, Shu B. Irreducible representations of the Hamiltonian algebra H(2r;n). J Austral Math Soc (to appear)
[20.]
Zhang C. W. Representations of the restricted Lie algebras of Cartan-type. J Algebra, 2005, 290, 408-432
CrossRef Google scholar
AI Summary AI Mindmap
PDF(198 KB)

628

Accesses

0

Citations

Detail

Sections
Recommended

/