Saddlepoint approximation for moments of random variables

Kai Zhao, Xue Cheng, Jingping Yang

Front. Math. China ›› 2011, Vol. 6 ›› Issue (6) : 1265-1284.

PDF(236 KB)
Front. Math. China All Journals
PDF(236 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (6) : 1265-1284. DOI: 10.1007/s11464-011-0128-7
Research Article
RESEARCH ARTICLE

Saddlepoint approximation for moments of random variables

Author information +
History +

Abstract

In this paper, we introduce a saddlepoint approximation method for higher-order moments like E(Sa)+ m, a>0, where the random variable S in these expectations could be a single random variable as well as the average or sum of some i.i.d random variables, and a > 0 is a constant. Numerical results are given to show the accuracy of this approximation method.

Keywords

Saddlepoint approximation / higher moments / sum of i.i.d. random variables

Cite this article

Download citation ▾
Kai Zhao, Xue Cheng, Jingping Yang. Saddlepoint approximation for moments of random variables. Front. Math. China, 2011, 6(6): 1265‒1284 https://doi.org/10.1007/s11464-011-0128-7
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Barndorff-Nielsen O., Cox D. R. Edgeworth and saddle-point approximations with statistical applications. J R Statist Soc B, 1979, 41 3 279-312
[2.]
Butler R. W. Saddle-point Approximations with Applications, 2007, Cambridge: Cambridge University Press
CrossRef Google scholar
[3.]
Daniels H. E. Saddlepoint approximations in statistics. Ann Math Statist, 1954, 25, 631-650
CrossRef Google scholar
[4.]
Daniels H. E. Tail probability approximations. Internat Statist Rev, 1987, 55 1 37-88
CrossRef Google scholar
[5.]
Embrechts P., Lindskog F., McNeil A. Rachev S. Modelling dependence with copulas and applications to risk management. Handbook of Heavy Tailed Distributions in Finance, 2003, Amsterdam: Elsevier.
[6.]
Gordy M. Saddlepoint approximation of credit risk. J Banking Finance, 2002, 26, 1335-1353
CrossRef Google scholar
[7.]
Huang X. Higher-order saddlepoint approximations in the Vasicek portfolio credit loss model. J Comput Finance, 2009, 11 1 93-113
[8.]
Huang X, Oosterlee C W. Saddlepoint approximations for expectations. Preprint, 2009
[9.]
Kaas R., Goovaerts M., Dhaene J., Denuit M. Modern Actuarial Risk Theory, 2001, London: Kluwer Academic Publishers.
[10.]
Lugannani R., Rice S. Saddlepoint approximation for the distribution of the sum of independent random variables. Adv Appl Probab, 1980, 12, 475-490
CrossRef Google scholar
[11.]
Martin R., Thompson K., Browne C. Gordy M. Taking to the saddle. Credit Risk Modelling: The Cutting-edge Collection, 2003, London: Riskbooks.
[12.]
Reid N. Saddlepoint methods and Statistical Inference. Stat Sci, 1988, 3 2 213-238
CrossRef Google scholar
[13.]
Rogers L. C. G., Zane O. Saddlepoint approximations to option prices. Ann Appl Probab, 1999, 9 2 493-503
CrossRef Google scholar
[14.]
Studer M. Stochastic Taylor Expansions and Saddlepoint Approximations for Risk Management, 2001, Zürich: ETH Zürich.
[15.]
Yang J., Hurd T., Zhang Xuping. Saddlepoint approximation method for pricing CDOs. J Comput Finance, 2006, 10 1 1-20
AI Summary AI Mindmap
PDF(236 KB)

1130

Accesses

0

Citations

Detail

Sections
Recommended

/