Fractal and smoothness properties of space-time Gaussian models

Yun XUE, Yimin XIAO

PDF(309 KB)
PDF(309 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (6) : 1217-1248. DOI: 10.1007/s11464-011-0126-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Fractal and smoothness properties of space-time Gaussian models

Author information +
History +

Abstract

Spatio-temporal models are widely used for inference in statistics and many applied areas. In such contexts, interests are often in the fractal nature of the sample surfaces and in the rate of change of the spatial surface at a given location in a given direction. In this paper, we apply the theory of Yaglom (1957) to construct a large class of space-time Gaussian models with stationary increments, establish bounds on the prediction errors, and determine the smoothness properties and fractal properties of this class of Gaussian models. Our results can be applied directly to analyze the stationary spacetime models introduced by Cressie and Huang (1999), Gneiting (2002), and Stein (2005), respectively.

Keywords

Space-time model / anisotropic Gaussian field / prediction error / mean square differentiability / sample path differentiability / Hausdorff dimension

Cite this article

Download citation ▾
Yun XUE, Yimin XIAO. Fractal and smoothness properties of space-time Gaussian models. Front Math Chin, 2011, 6(6): 1217‒1248 https://doi.org/10.1007/s11464-011-0126-9

References

[1]
Adler R J. The Geometry of Random Fields. New York: Wiley, 1981
[2]
Adler R J, Taylor J E. Random Fields and Geometry. New York: Springer, 2007
[3]
Anderes E B, Stein M L. Estimating deformations of isotropic Gaussian random fields on the plane. Ann Statist, 2008, 36: 719-741
CrossRef Google scholar
[4]
Banerjee S, Gelfand A E. On smoothness properties of spatial processes. J Multivariate Anal, 2003, 84: 85-100
CrossRef Google scholar
[5]
Banerjee S, Gelfand A E, Sirmans C F. Directional rates of change under spatial process models. J Amer Statistical Assoc, 2003, 98: 946-954
CrossRef Google scholar
[6]
Berg C, Forst G. Potential Theory on Locally Compact Abelian Groups. New York-Heidelberg: Springer-Verlag, 1975
[7]
Calder C A, Cressie N. Some topics in convolution-based spatial modeling. In: Proceedings of the 56th Session of the International Statistics Institute, Lisbon, Portugal. 2007
[8]
Chan G, Wood A T A. Increment-based estimators of fractal dimension for twodimensional surface data. Statist Sinica, 2000, 10: 343-376
[9]
Chan G, Wood A T A. Estimation of fractal dimension for a class of non-Gaussian stationary processes and fields. Ann Statist, 2004, 32: 1222-1260
CrossRef Google scholar
[10]
Constantine A G, Hall P. Characterizing surface smoothness via estimation of effective fractal dimension. J Roy Statist Soc Ser B, 1994, 56: 97-113
[11]
Cramér H, Leadbetter M R. Stationary and Related Stochastic Processes. New York: John Wiley & Sons, Inc, 1967
[12]
Cressie N. Statistics for Spatial Data (rev ed). New York: Wiley, 1993
[13]
Cressie N, Huang H-C. Classes of nonseparable, spatiotemporal stationary covariance functions. J Amer Statist Assoc, 1999, 94: 1330-1340
CrossRef Google scholar
[14]
Davies S, Hall P. Fractal analysis of surface roughness by using spatial data (with discussion). J Roy Statist Soc Ser B, 1999, 61: 3-37
CrossRef Google scholar
[15]
de Iaco S, Myers D E, Posa D. Space-Time analysis using a general product-sum model. Statist Probab Letters, 2001, 52: 21-28
CrossRef Google scholar
[16]
de Iaco S, Myers D E, Posa D. Nonseparable space-time covariance models: some parametric families. Math Geology, 2002, 34: 23-42
CrossRef Google scholar
[17]
de Iaco S, Myers D E, Posa D. The linear coregionalization model and the product-sum space-time variogram. Math Geology, 2003, 35: 25-38
CrossRef Google scholar
[18]
Falconer K J. Fractal Geometry—Mathematical Foundations and Applications. New York: Wiley & Sons, 1990
[19]
Fuentes M. Spectral methods for nonstationary spatial processes. 2002, 89: 197-210
[20]
Fuentes M. A formal test for nonstationarity of spatial stochastic processes. J Multivariate Anal, 2005, 96: 30-54
CrossRef Google scholar
[21]
Gneiting T. Nonseparable, stationary covariance functions for space-time data. J Amer Statist Assoc, 2002, 97: 590-600
CrossRef Google scholar
[22]
Gneiting T, Kleiber W, Schlather M. Matérn cross-covariance functions for multivariate random fields. Preprint, 2009
[23]
Hall P, Wood A T A. On the performance of box-counting estimators of fractal dimension. Biometrika, 1993, 80: 246-252
CrossRef Google scholar
[24]
Higdon D. Space and space-time modeling using process convolutions. In: Anderson C, Barnett V, Chatwin P C, El-Shaarawi A H, eds. Quantitative Methods for Current Environmental Issues. New York: Springer-Verlag, 2002, 37-56
CrossRef Google scholar
[25]
Higdon D, Swall J, Kern J. Nonstationary spatial modeling. In: Bernardo J M, , eds. Bayesian Statistics, Vol 6. Oxford: Oxford University Press, 1999, 761-768
[26]
Jones R H, Zhang Y. Models for continuous stationary space-time processes. In: Gregoire T G, Brillinger D R, Diggle P J, Russek-Cohen E, Warren W G, Wolfinger R D, eds. Modelling Longitudinal and Spatially Correlated Data. Lecture Notes in Statist, No 122. New York: Springer, 1997, 289-298
CrossRef Google scholar
[27]
Kahane J-P. Some Random Series of Functions. 2nd ed. Cambridge: Cambridge University Press, 1985
[28]
Kent J T, Wood A T A. Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. J Roy Statist Soc Ser B, 1997, 59: 679-699
[29]
Kolovos A, Christakos G, Hristopulos D T, Serre M L. Methods for generating nonseparable spatiotemporal covariance models with potential environmental applications. Adv Water Resour, 2004, 27: 815-830
CrossRef Google scholar
[30]
Kyriakidis P C, Journe A G. Geostatistical space-time models: a review. Math Geology, 1999, 31: 651-684
CrossRef Google scholar
[31]
Ma C. Families of spatio-temporal stationary covariance models. J Statist Plan Infer, 2003, 116: 489-501
CrossRef Google scholar
[32]
Ma C. Spatio-temporal stationary covariance models. J Multivariate Anal, 2003, 86: 97-107
CrossRef Google scholar
[33]
Ma C. Spatial autoregression and related spatio-temporal models. J Multivariate Anal, 2004, 88: 152-162
CrossRef Google scholar
[34]
Ma C. Spatio-temporal variograms and covariance models. Adv Appl Probab, 2005, 37: 706-725
CrossRef Google scholar
[35]
Ma C. A class of stationary random fields with a simple correlation structure. J Multivariate Anal, 2005, 94: 313-327
CrossRef Google scholar
[36]
Ma C. Stationary random fields in space and time with rational spectral densities. IEEE Trans Inform Th, 2007, 53: 1019-1029
CrossRef Google scholar
[37]
Ma C. Recent developments on the construction of spatio-temporal covariance models. Stoch Environ Res Risk Assess, 2008, 22(suppl 1): 39-47
CrossRef Google scholar
[38]
Meerschaert M M, Wang W, Xiao Y. Fernique-type inequalities and moduli of continuity of anisotropic Gaussian random fields. Trans Amer Math Soc (to appear)
[39]
Paciorek C J, Schervish M J. Spatial modelling using a new class of nonstationary covariance functions. Environmetrics, 2006, 17: 483-506
CrossRef Google scholar
[40]
Schmidt A, O’Hagan A. Bayesian inference for nonstationary spatial covariance structure via spatial deformation. J Roy Statist Soc Ser B, 2003, 65: 745-758
CrossRef Google scholar
[41]
Stein M L. Interpolation of Spatial Data: Some Theory for Kriging. New York: Springer, 1999
CrossRef Google scholar
[42]
Stein M L. Space-time covariance functions. J Amer Statist Assoc, 2005, 100: 310-321
CrossRef Google scholar
[43]
Xiao Y. Strong local nondeterminism of Gaussian random fields and its applications. In: Lai T-L, Shao Q-M, Qian L, eds. Asymptotic Theory in Probability and Statistics with Applications. Beijing: Higher Education Press, 2007, 136-176
[44]
Xiao Y. Sample path properties of anisotropic Gaussian random fields. In: Khoshnevisan D, Rassoul-Agha F, eds. A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Math, Vol 1962. New York: Springer, 2009, 145-212
CrossRef Google scholar
[45]
Xiao Y. Properties of strong local nondeterminism and local times of stable random fields. In: Dalang R, Dozzi M, Russo F, eds. Stochastic Analysis, Random Fields and Applications VI. Progress in Probability 63. Basel: Birkhäuser, 2011, 279-310
CrossRef Google scholar
[46]
Yaglom A M. Some classes of random fields in n-dimensional space, related to stationary random processes. Th Probab Appl, 1957, 2: 273-320
CrossRef Google scholar
[47]
Zhu Z, Stein M L. Parameter estimation for fractional Brownian surfaces. Statist Sinica, 2002, 12: 863-883

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(309 KB)

Accesses

Citations

Detail

Sections
Recommended

/