A study of biases of DNA copy number estimation based on PICR model

Quan WANG, Jianghan QU, Xiaoxing CHENG, Yongjian KANG, Lin WAN, Minping QIAN, Minghua DENG

PDF(711 KB)
PDF(711 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (6) : 1203-1216. DOI: 10.1007/s11464-011-0125-x
RESEARCH ARTICLE
RESEARCH ARTICLE

A study of biases of DNA copy number estimation based on PICR model

Author information +
History +

Abstract

Affymetrix single-nucleotide polymorphism (SNP) arrays have been widely used for SNP genotype calling and copy number variation (CNV) studies, both of which are dependent on accurate DNA copy number estimation significantly. However, the methods for copy number estimation may suffer from kinds of difficulties: probe dependent binding affinity, crosshybridization of probes, and the whole genome amplification (WGA) of DNA sequences. The probe intensity composite representation (PICR) model, one former established approach, can cope with most complexities and achieve high accuracy in SNP genotyping. Nevertheless, the copy numbers estimated by PICR model still show array and site dependent biases for CNV studies. In this paper, we propose a procedure to adjust the biases and then make CNV inference based on both PICR model and our method. The comparison indicates that our correction of copy numbers is necessary for CNV studies.

Keywords

single-nucleotide polymorphism (SNP) array / copy number variation (CNV) / cross-hybridization

Cite this article

Download citation ▾
Quan WANG, Jianghan QU, Xiaoxing CHENG, Yongjian KANG, Lin WAN, Minping QIAN, Minghua DENG. A study of biases of DNA copy number estimation based on PICR model. Front Math Chin, 2011, 6(6): 1203‒1216 https://doi.org/10.1007/s11464-011-0125-x

References

[1]
Barnes C, Plagnol V, Fitzgerald T, Redon R, Marchini J, Clayton D, Hurles M E. A robust statistical method for case-control association testing with copy number variation. Nat Genet, 2008, 40(10): 1245-1252
CrossRef Google scholar
[2]
Bengtsson H, Irizarry R, Carvalho B, Speed T P. Estimation and assessment of raw copy numbers at the single locus level. Bioinformatics, 2008, 24(6): 759-767
CrossRef Google scholar
[3]
Bengtsson H, Wirapati P, Speed T P. A single-array preprocessing method for estimating full-resolution raw copy numbers from all Affymetrix genotyping arrays including GenomeWideSNP 5 & 6. Bioinformatics, 2009, 25(17): 2149-2156
CrossRef Google scholar
[4]
Bignell G R, Huang J, Greshock J, Watt S, Butler A, West S, Grigorova M, Jones K W, Wei W, Stratton M R, . High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res, 2004, 14(2): 287-295
CrossRef Google scholar
[5]
Carter N P. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet, 2007, 39(7 Suppl): S16-21
CrossRef Google scholar
[6]
Di X, Matsuzaki H, Webster T A, Hubbell E, Liu G, Dong S, Bartell D, Huang J, Chiles R, Yang G, . Dynamic model based algorithms for screening and genotyping over 100 K SNPs on oligonucleotide microarrays. Bioinformatics, 2005, 21(9): 1958-1963
CrossRef Google scholar
[7]
Greenman C D, Bignell G, Butler A, Edkins S, Hinton J, Beare D, Swamy S, Santarius T, Chen L, Widaa S, Futreal P A, Stratton M R. PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data. Biostatistics, 2010, 11(1): 164-175
CrossRef Google scholar
[8]
Held G A, Grinstein G, Tu Y. Modeling of DNA microarray data by using physical properties of hybridization. Proc Natl Acad Sci USA, 2003, 100(13): 7575-7580
CrossRef Google scholar
[9]
Held G A, Grinstein G, Tu Y. Relationship between gene expression and observed intensities in DNA microarrays—a modeling study. Nucleic Acids Res, 2006, 34(9): e70
CrossRef Google scholar
[10]
Huang J, Wei W, Chen J, Zhang J, Liu G, Di X, Mei R, Ishikawa S, Aburatani H, Jones K W, . CARAT: a novel method for allelic detection of DNA copy number changes using high density oligonucleotide arrays. BMC Bioinformatics, 2006, 7: 83
CrossRef Google scholar
[11]
Iafrate A J, Feuk L, Rivera M N, Listewnik M L, Donahoe P K, Qi Y, Scherer S W, Lee C. Detection of large-scale variation in the human genome. Nat Genet, 2004, 36(9): 949-951
CrossRef Google scholar
[12]
Johnson W E, Li W, Meyer C A, Gottardo R, Carroll J S, Brown M, Liu X S. Model-based analysis of tiling-arrays for ChIP-chip. Proc Natl Acad Sci USA, 2006, 103(33): 12457-12462
CrossRef Google scholar
[13]
Kapur K, Jiang H, Xing Y, Wong W H. Cross-hybridization modeling on Affymetrix exon arrays. Bioinformatics, 2008, 24(24): 2887-2893
CrossRef Google scholar
[14]
Korn J M, Kuruvilla F G, McCarroll S A, Wysoker A, Nemesh J, Cawley S, Hubbell E, Veitch J, Collins P J, Darvishi K, . Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet, 2008, 40(10): 1253-1260
CrossRef Google scholar
[15]
Laframboise T, Harrington D, Weir B A. PLASQ: a generalized linear model-based procedure to determine allelic dosage in cancer cells from SNP array data. Biostatistics, 2007, 8(2): 323-336
CrossRef Google scholar
[16]
McCarroll S A, Kuruvilla F G, Korn J M, Cawley S, Nemesh J, Wysoker A, Shapero M H, de Bakker P I, Maller J B, Kirby A, . Integrated detection and populationgenetic analysis of SNPs and copy number variation. Nat Genet, 2008, 40(10): 1166-1174
CrossRef Google scholar
[17]
Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A, Kurokawa M, Chiba S, Bailey D K, Kennedy G C, . A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res, 2005, 65(14): 6071-6079
CrossRef Google scholar
[18]
Olshen A B, Venkatraman E S, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics, 2004, 5(4): 557-572
CrossRef Google scholar
[19]
Ono N, Suzuki S, Furusawa C, Agata T, Kashiwagi A, Shimizu H, Yomo T. An improved physico-chemical model of hybridization on high-density oligonucleotide microarrays. Bioinformatics, 2008, 24(10): 1278-1285
CrossRef Google scholar
[20]
Pugh T J, Delaney A D, Farnoud N, Flibotte S, Griffith M, Li H I, Qian H, Farinha P, Gascoyne R D, Marra M A. Impact of whole genome amplification on analysis of copy number variants. Nucleic Acids Res, 2008, 36(13): e80
CrossRef Google scholar
[21]
Rabbee N, Speed T P. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics, 2006, 22(1): 7-12
CrossRef Google scholar
[22]
Redon R, Ishikawa S, Fitch K R, Feuk L, Perry G H, Andrews T D, Fiegler H, Shapero M H, Carson A R, Chen W, . Global variation in copy number in the human genome. Nature, 2006, 444(7118): 444-454
CrossRef Google scholar
[23]
Scherer S W, Lee C, Birney E, Altshuler D M, Eichler E E, Carter N P, Hurles M E, Feuk L. Challenges and standards in integrating surveys of structural variation. Nat Genet, 2007, 39(7 Suppl): S7-15
CrossRef Google scholar
[24]
Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M Y, . Large-scale copy number polymorphism in the human genome. Science, 2004, 305(5683): 525-528
CrossRef Google scholar
[25]
Slater H R, Bailey D K, Ren H, Cao M, Bell K, Nasioulas S, Henke R, Choo K H, Kennedy G C. High-resolution identification of chromosomal abnormalities using oligonucleotide arrays containing 116,204 SNPs. Am J Hum Genet, 2005, 77(5): 709-726
CrossRef Google scholar
[26]
Wan L, Sun K, Ding Q, Cui Y, Li M, Wen Y, Elston R C, Qian M, Fu W J. Hybridization modeling of oligonucleotide SNP arrays for accurate DNA copy number estimation. Nucleic Acids Res, 2009, 37(17): e117
CrossRef Google scholar
[27]
Wan L, Xiao Y, Chen Q, Deng M, Qian M. The analysis of biases of copy numbers from Affymetrix SNP arrays. Communications in Information and Systems, 2010, 10(2): 81-96
[28]
Weir B A, Woo M S, Getz G, Perner S, Ding L, Beroukhim R, Lin W M, Province M A, Kraja A, Johnson L A, . Characterizing the cancer genome in lung adenocarcinoma. Nature, 2007, 450(7171): 893-898
CrossRef Google scholar
[29]
Xiao Y, Segal M R, Yang Y H, Yeh R F. A multi-array multi-SNP genotyping algorithm for Affymetrix SNP microarrays. Bioinformatics, 2007, 23(12): 1459-1467
CrossRef Google scholar
[30]
Zhang L, Miles M F, Aldape K D. A model of molecular interactions on short oligonucleotide microarrays. Nat Biotechnol, 2003, 21(7): 818-821
CrossRef Google scholar
[31]
Zhang L, Wu C, Carta R, Zhao H. Free energy of DNA duplex formation on short oligonucleotide microarrays. Nucleic Acids Res, 2007, 35(3): e18
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(711 KB)

Accesses

Citations

Detail

Sections
Recommended

/