
An ergodic theorem of a parabolic Anderson model driven by Lévy noise
Yong Liu, Jianglun Wu, Fengxia Yang, Jianliang Zhai
Front. Math. China ›› 2011, Vol. 6 ›› Issue (6) : 1147-1183.
An ergodic theorem of a parabolic Anderson model driven by Lévy noise
In this paper, we study an ergodic theorem of a parabolic Andersen model driven by Lévy noise. Under the assumption that A = (a(i, j)) i,j∈S is symmetric with respect to a σ-finite measure gp, we obtain the long-time convergence to an invariant probability measure ν h starting from a bounded nonnegative A-harmonic function h based on self-duality property. Furthermore, under some mild conditions, we obtain the one to one correspondence between the bounded nonnegative A-harmonic functions and the extremal invariant probability measures with finite second moment of the nonnegative solution of the parabolic Anderson model driven by Lévy noise, which is an extension of the result of Y. Liu and F. X. Yang.
Parabolic Anderson model / ergodic theorem / invariant measure / Lévy noise / self-duality
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
Liu Y. An application of the compound Poisson process to the stochastic differential equations with jumps. In: Some Problems in Stochastic Analysis, the Research Report of Postdoctor at AMSS, CAS. 2001
|
[24.] |
|
[25.] |
Liu Y, Yang F X. Some ergodic theorems of a parabolic Anderson model. Preprint. Or see: Some ergodic theorems of linear systems of interacting diffusion. Acta Math Sin (Engl Ser) (to appear)
|
[26.] |
|
[27.] |
|
[28.] |
|
[29.] |
|
[30.] |
|
[31.] |
|
[32.] |
|
[33.] |
|
/
〈 |
|
〉 |