Weighted estimates for commutators of one-sided oscillatory integral operators

Shaoguang SHI, Zunwei FU, Shanzhen LU

PDF(148 KB)
PDF(148 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (3) : 507-516. DOI: 10.1007/s11464-011-0113-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Weighted estimates for commutators of one-sided oscillatory integral operators

Author information +
History +

Abstract

In this paper, we study the weighted norm inequalities for commutators formed by a class of one-sided oscillatory integral operators and functions in one-sided BMO spaces.

Keywords

Commutator / one-sided oscillatory integral / BMO / one-sided weight

Cite this article

Download citation ▾
Shaoguang SHI, Zunwei FU, Shanzhen LU. Weighted estimates for commutators of one-sided oscillatory integral operators. Front Math Chin, 2011, 6(3): 507‒516 https://doi.org/10.1007/s11464-011-0113-1

References

[1]
Acrarez J, Bagby R J, Kurtz D S, Perez C. Weighted estimates for commutators of linear operators. Studia Math, 1993, 104(2): 195-209
[2]
Aimar H, Forzani L, Martín-Reyes F J. On weighted inequalities for one-sided singular integrals. Proc Amer Math Soc, 1997, 125: 2057-2064
CrossRef Google scholar
[3]
Chanillo S, Christ M. Weak (1,1) bounds for oscillatory integrals. Duke Math J, 1987, 55: 141-155
CrossRef Google scholar
[4]
Coifman R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann Math, 1976, 103: 611-635
CrossRef Google scholar
[5]
Ding Y, Lu S Z. Weighted Lp-boundedness for higher order commutators of oscillatory singular integrals. Tohoku Math J, 1996, 48: 437-449
CrossRef Google scholar
[6]
Fu Z W, Shi S G, Lu S Z. Weighted norm inequality for the one-sided oscillatory singular operators. Preprint
[7]
Lorente M, Riveros M S. Weighted inequlities for commutators of one-sided singular integrals. Comment Math Univ Carolinae, 2002, 43(1): 83-101
[8]
Lu S Z, Wu H X. Oscillatory singular integrals and commutators with rough kernels. Ann Sci Math Quebec, 2003, 27: 47-66
[9]
Lu S Z, Zhang Y. Weighted norm inequality of a class of oscillatory singular operators. Chin Sci Bull, 1992, 37: 9-13
[10]
Martín-Reyes F J, Pirk L, Torre A be la. A∞+ condition. Can J Math, 1993, 45: 1231-1244
CrossRef Google scholar
[11]
Martín-Reyes F J, Torre A be la. One-sided BMO spaces. J London Math Soc, 1994, 49: 529-542
[12]
Ricci F, Stein E M. Harmonic analysis on nilpotant groups and singular integrals I: Oscillatory integrals. J Funct Anal, 1987, 73: 179-194
CrossRef Google scholar
[13]
Riveros M S, Cordoda , Torre A D. On the best ranges for Ap+ and RHr+. Czech Math J, 2001, 126: 285-301
CrossRef Google scholar
[14]
Sato S. Weighted weak type (1,1) estimates for oscillatory integrals. Studia Math, 2001, 47: 1-17
CrossRef Google scholar
[15]
Sawyer E. Weighted inequalities for the one-sided Hardy-Littlewood maximal function. Trans Amer Math Soc, 1986, 297: 53-61
CrossRef Google scholar
[16]
Stein E M, Weiss G. Interpolation of operators with change of measures. Trans Amer Math Soc, 1958, 87: 159-172
CrossRef Google scholar
[17]
Wu H X. Boundedness of higher order commutators of oscillatory singular integrals with rough kernels. Studia Math, 2005, 167(1): 29-43
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(148 KB)

Accesses

Citations

Detail

Sections
Recommended

/