Weighted estimates for parametrized Littlewood-Paley operators

Hongbin WANG, Zongguang LIU

PDF(219 KB)
PDF(219 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (3) : 517-534. DOI: 10.1007/s11464-011-0110-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Weighted estimates for parametrized Littlewood-Paley operators

Author information +
History +

Abstract

In this paper, we obtain some boundedness on the weighted Lebesgue spaces and the weighted Hardy spaces for the parametrized Littlewood-Paley operators with the kernel Ω satisfying the logarithmic type Lipschitz conditions.

Keywords

Parametrized area integral / parametrized Littlewood-Paley gλ* function

Cite this article

Download citation ▾
Hongbin WANG, Zongguang LIU. Weighted estimates for parametrized Littlewood-Paley operators. Front Math Chin, 2011, 6(3): 517‒534 https://doi.org/10.1007/s11464-011-0110-4

References

[1]
Bownik M, Li B, Yang D, Zhou Y. Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ Math J, 2008, 57: 3065-3100
CrossRef Google scholar
[2]
Chanillo S, Wheeden R L. Some weighted inequalities for the area integral. Indiana Univ Math J, 1987, 36: 277-294
CrossRef Google scholar
[3]
Ding Y, Lu S, Xue Q. Parametrized area integrals on Hardy spaces and weak Hardy spaces. Acta Math Sinica (English Ser), 2007, 23: 1537-1552
CrossRef Google scholar
[4]
Ding Y, Lu S, Xue Q. Parametrized Littlewood-Paley operators on Hardy and weak Hardy spaces. Math Nach, 2007, 280: 351-363
CrossRef Google scholar
[5]
Ding Y, Lu S, Yabuta K. A problem on rough parametric Marcinkiewicz functions. J Austral Math Soc (A), 2002, 72: 13-21
CrossRef Google scholar
[6]
Ding Y, Xue Q. Weighted Lp boundedness for parametrized Littlewood-Paley operators. Taiwanese Jour Math, 2007, 11: 1143-1165
[7]
Fefferman C, Stein E M. Some maximal inequalities. Amer J Math, 1971, 93: 107-115
CrossRef Google scholar
[8]
Garcia-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities Related Topics. Amsterdam: North-Holland, 1985
[9]
Hörmander L. Estimates for translation invariant operators in Lp spaces. Acta Math, 1960, 104: 93-140
CrossRef Google scholar
[10]
Lee J, Rim K S. Estimates of Marcinkiewicz integrals with bounded homogeneous kernels of degree zero. Integral Equations and Operator Theory, 2004, 48: 213-223
CrossRef Google scholar
[11]
Sakamoto M, Yabuta K. Boundedness of Marcinkiewicz functions. Studia Math, 1999, 135: 103-142
[12]
Stein E M. On the function of Littlewood-Paley, Lusin and Marcinkiewicz. Trans Amer Math Soc, 1958, 88: 430-466
CrossRef Google scholar
[13]
Stein E M. On some function of Littlewood-Paley and Zygmund. Bull Amer Math Soc, 1961, 67: 99-101
CrossRef Google scholar
[14]
Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton Univ Press, 1970
[15]
Wang H, Liu Z. The Hardy spaces estimates for the commutator of Marcinkiewicz integral. J Math Res Expo, 2009, 29: 137-145
[16]
Wang H, Zhang X, Liu Z. The endpoint estimates for the commutator of Marcinkiewicz integral. Acta Math Sinica (Chinese Ser), 2008, 51: 265-274 (in Chinese)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(219 KB)

Accesses

Citations

Detail

Sections
Recommended

/