λ * function" /> λ * function" /> λ * function" />

Weighted estimates for parametrized Littlewood-Paley operators

Hongbin Wang , Zongguang Liu

Front. Math. China ›› 2011, Vol. 6 ›› Issue (3) : 517 -534.

PDF (219KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (3) : 517 -534. DOI: 10.1007/s11464-011-0110-4
Research Article
RESEARCH ARTICLE

Weighted estimates for parametrized Littlewood-Paley operators

Author information +
History +
PDF (219KB)

Abstract

In this paper, we obtain some boundedness on the weighted Lebesgue spaces and the weighted Hardy spaces for the parametrized Littlewood-Paley operators with the kernel Ω satisfying the logarithmic type Lipschitz conditions.

Keywords

Parametrized area integral / λ * function')">parametrized Littlewood-Paley g λ * function

Cite this article

Download citation ▾
Hongbin Wang, Zongguang Liu. Weighted estimates for parametrized Littlewood-Paley operators. Front. Math. China, 2011, 6(3): 517-534 DOI:10.1007/s11464-011-0110-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bownik M., Li B., Yang D., Zhou Y. Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ Math J, 2008, 57, 3065-3100

[2]

Chanillo S., Wheeden R. L. Some weighted inequalities for the area integral. Indiana Univ Math J, 1987, 36, 277-294

[3]

Ding Y., Lu S., Xue Q. Parametrized area integrals on Hardy spaces and weak Hardy spaces. Acta Math Sinica (English Ser), 2007, 23, 1537-1552

[4]

Ding Y., Lu S., Xue Q. Parametrized Littlewood-Paley operators on Hardy and weak Hardy spaces. Math Nach, 2007, 280, 351-363

[5]

Ding Y., Lu S., Yabuta K. A problem on rough parametric Marcinkiewicz functions. J Austral Math Soc (A), 2002, 72, 13-21

[6]

Ding Y., Xue Q. Weighted L p boundedness for parametrized Littlewood-Paley operators. Taiwanese Jour Math, 2007, 11, 1143-1165

[7]

Fefferman C., Stein E. M. Some maximal inequalities. Amer J Math, 1971, 93, 107-115

[8]

Garcia-Cuerva J., Rubio de Francia J. L. Weighted Norm Inequalities Related Topics, 1985, Amsterdam: North-Holland.

[9]

Hörmander L. Estimates for translation invariant operators in L p spaces. Acta Math, 1960, 104, 93-140

[10]

Lee J., Rim K. S. Estimates of Marcinkiewicz integrals with bounded homogeneous kernels of degree zero. Integral Equations and Operator Theory, 2004, 48, 213-223

[11]

Sakamoto M., Yabuta K. Boundedness of Marcinkiewicz functions. Studia Math, 1999, 135, 103-142

[12]

Stein E. M. On the function of Littlewood-Paley, Lusin and Marcinkiewicz. Trans Amer Math Soc, 1958, 88, 430-466

[13]

Stein E. M. On some function of Littlewood-Paley and Zygmund. Bull Amer Math Soc, 1961, 67, 99-101

[14]

Stein E. M. Singular Integrals and Differentiability Properties of Functions, 1970, Princeton: Princeton Univ Press.

[15]

Wang H., Liu Z. The Hardy spaces estimates for the commutator of Marcinkiewicz integral. J Math Res Expo, 2009, 29, 137-145

[16]

Wang H., Zhang X., Liu Z. The endpoint estimates for the commutator of Marcinkiewicz integral. Acta Math Sinica (Chinese Ser), 2008, 51, 265-274

AI Summary AI Mindmap
PDF (219KB)

765

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/