Singular values of nonnegative rectangular tensors

Yuning Yang , Qingzhi Yang

Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 363 -378.

PDF (209KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 363 -378. DOI: 10.1007/s11464-011-0108-y
Research Article
RESEARCH ARTICLE

Singular values of nonnegative rectangular tensors

Author information +
History +
PDF (209KB)

Abstract

The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. Some properties concerning the singular values of a real rectangular tensor were discussed by K. C. Chang et al. [J. Math. Anal. Appl., 2010, 370: 284–294]. In this paper, we give some new results on the Perron-Frobenius Theorem for nonnegative rectangular tensors. We show that the weak Perron-Frobenius keeps valid and the largest singular value is really geometrically simple under some conditions. In addition, we establish the convergence of an algorithm proposed by K. C. Chang et al. for finding the largest singular value of nonnegative primitive rectangular tensors.

Keywords

Nonnegative rectangular tensor / Perron-Frobenius Theorem / singular value / algorithm

Cite this article

Download citation ▾
Yuning Yang, Qingzhi Yang. Singular values of nonnegative rectangular tensors. Front. Math. China, 2011, 6(2): 363-378 DOI:10.1007/s11464-011-0108-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bloy L., Verma R. Metaxas D., Axel L., Fichtinger G., Székely G. On computing the underlying fiber directions from the diffusion orientation distribution function. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2008, 2008, Berlin/Heidelberg: Springer 1-8

[2]

Chang K. C., Pearson K. T., Zhang T. Perron Frobenius Theorem for nonnegative tensors. Comm Math Sci, 2008, 6, 507-520

[3]

Chang K. C., Qi L., Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl, 2010, 370, 284-294

[4]

Drineas P, Lim L H. A multilinear spectral theory of hypergraphs and expander hypergraphs. 2005

[5]

Lathauwer L. D., Moor B. D., Vandewalle J. On the best rank-1 and rank-(R 1,R 2, ..., R N) approximation of higher-order tensors. SIAM J Matrix Anal Appl, 2000, 21, 1324-1342

[6]

Lim L. H. Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, 1, 129-132

[7]

Lim L. H. Multilinear pagerank: measuring higher order connectivity in linked objects, 2005, The Internet: Today and Tomorrow.

[8]

Ng M., Qi L., Zhou G. Finding the largest eigenvalue of a non-negative tensor. SIAM J Matrix Anal Appl, 2009, 31, 1090-1099

[9]

Ni Q., Qi L., Wang F. An eigenvalue method for the positive definiteness identification problem. IEEE Transactions on Automatic Control, 2008, 53, 1096-1107

[10]

Pearson K. Essentially positive tensors. Int J Algebra, 2010, 4, 421-427

[11]

Pearson K. Primitive tensors and convergence of an iterative process for the eigenvalues of a primitive tensor. arXiv: 1004.2423v1, 2010

[12]

Qi L. Eigenvalues of a real supersymmetric tensor. J Symb Comput, 2005, 40, 1302-1324

[13]

Qi L., Sun W., Wang Y. Numerical multilinear algebra and its applications. Front Math China, 2007, 2 4 501-526

[14]

Qi L., Wang Y., Wu E. D-eigenvalues of diffusion kurtosis tensor. J Comput Appl Math, 2008, 221, 150-157

[15]

Yang Y., Yang Q. Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31, 2517-2530

[16]

Yang Y, Yang Q. A note on the geometric simplicity of the spectral radius of nonnegative irreducible tensor. http://arxiv.org/abs/1101.2479v1, 2010

AI Summary AI Mindmap
PDF (209KB)

1014

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/