Generating index of finite-dimensional Lie algebras
Fang FANG, Fuhai ZHU
Generating index of finite-dimensional Lie algebras
The notion of generating index of Lie algebras is introduced. We characterize some Lie algebras with full generating index and classify the Lie algebras with generating index 2 and 3. As a corollary, we give a characterization of 2-step nilpotent Lie algebras.
Generating index / eigenvalue number / nil-index
[1] |
Bai C. Left-symmetric algebras from linear functions. J Algebra, 2004, 28(2): 651-665
CrossRef
Google scholar
|
[2] |
Gauger M A. On the classification of Metabelian Lie algebras. Trans A M S, 1973, 179: 293-329
|
[3] |
Serre J P. Algèbres de Lie Semi-simples Complexes. New York: W A Benjamin, 1966
|
[4] |
Svinolupov S I. On the analogues of the Burgers equation. Phys Lett A, 1989, 135: 32-36
CrossRef
Google scholar
|
[5] |
Svinolupov S I, Sokolov V V. Vector-matrix generalizations of classical integrable equations. Theoret and Math Phys, 1994, 100: 959-962
CrossRef
Google scholar
|
/
〈 | 〉 |