A new characterization of Finsler metrics with constant flag curvature 1

Xiaohuan MO

PDF(177 KB)
PDF(177 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 309-323. DOI: 10.1007/s11464-011-0099-8
RESEARCH ARTICLE
RESEARCH ARTICLE

A new characterization of Finsler metrics with constant flag curvature 1

Author information +
History +

Abstract

The purpose of this article is to derive an integral inequality of Ricci curvature with respect to Reeb field in a Finsler space and give a new geometric characterization of Finsler metrics with constant flag curvature 1.

Keywords

Finsler metric / constant flag curvature / Reeb vector field

Cite this article

Download citation ▾
Xiaohuan MO. A new characterization of Finsler metrics with constant flag curvature 1. Front Math Chin, 2011, 6(2): 309‒323 https://doi.org/10.1007/s11464-011-0099-8

References

[1]
Bao D, Chern S S, Shen Z. On the Gauss-Bonnet integrand for 4-dimensional Landsberg spaces. In: Bao D, Chern S S, Shen Z, eds. Finsler Geometry, Joint summer Research Conference on Finsler Geometry, July 16–20, 1995, Seattle, Washington. Contemp Math, 196. Providence: Amer Math Soc, 1996, 15-25
[2]
Bao D, Chern S-S, Shen Z. An Introduction to Riemann-Finsler Geometry. Graduate Texts in Mathematics, 200. New York: Springer-Verlag, 2000
[3]
Bao D, Robles C, Shen Z. Zermelo navigation on Riemannian manifolds. J Differential Geom, 2004, 66: 377-435
[4]
Bao D, Shen Z. On the volume of unit tangent spheres in a Finsler manifold. Results Math, 1994, 26: 1-17
[5]
Bao D, Shen Z. Finsler metrics of constant positive curvature on the Lie group S3. J London Math Soc, 2002, 66(2): 453-467
CrossRef Google scholar
[6]
Bejancu A, Farran H R. A geometric characterization of Finsler manifolds of constant curvature K = 1. Inter J Math and Math Sci, 2000, 23: 399-407
CrossRef Google scholar
[7]
Bryant R L. Finsler structures on the 2-sphere satisfying K = 1. In: Bao D, Chern S S, Shen Z, eds. Finsler Geometry, Joint summer Research Conference on Finsler Geometry, July 16–20, 1995, Seattle, Washington. Contemp Math, 196. Providence: Amer Math Soc, 1996, 27-41
[8]
Bryant R L. Projectively flat Finsler 2-spheres of constant curvature. Selecta Math (NS), 1997, 3: 161-203
CrossRef Google scholar
[9]
Bryant R L. Some remarks on Finsler manifolds with constant flag curvature. Special Issue for S. S. Chern. Houston J Math, 2002, 28: 221-262
[10]
Chern S S. Riemannian geometry as a special case of Finsler geometry. Contem Math, 1996, 196: 51-58
[11]
Chern S S, Carmo M do, Kobayashi S. Minimal submanifolds of a sphere with second fundamental form of constant length. In: Browder F E, ed. Functional Analysis and Related Fields. Berlin: Springer-Verlag, 1970, 59-75
[12]
Chern S S, Shen Z. Riemann-Finsler Geometry. Nankai Tracts in Mathematics, 6. Hackensack: World Scientific Publishing Co Pte Ltd, 2005
[13]
Li A, Li J. An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch Math (Basel), 1992, 58: 582-594
[14]
Mo X. Characterization and structure of Finsler spaces with constant flag curvature. Sci China, Ser A, 1998, 41: 910-917
CrossRef Google scholar
[15]
Mo X. Flag curvature tensor on a closed Finsler surface. Result in Math, 1999, 36: 149-159
[16]
Mo X. On the flag curvature of a Finsler space with constant S-curvature. Houston Journal of Mathematics, 2005, 31: 131-144
[17]
Mo X. An Introduction to Finsler Geometry. Singapore: World Scientific Press, 2006
CrossRef Google scholar
[18]
Mo X, Yu C. On the Ricci curvature of a Randers metrics of isotropic S-curvature. Acta Mathematica Sinica (NS), 2008, 24: 991-996
[19]
Peng C, Terng C. The scalar curvature of minimal hypersurfaces in spheres. Math Ann, 1983, 266: 105-113
CrossRef Google scholar
[20]
Shen Y. On intrinsic rigidity for minimal submanifolds in a sphere. Sci China, Ser A, 1989, 32: 769-781
[21]
Shen Z. Projectively flat Finsler metrics of constant flag curvature. Trans Amer Math Soc, 2003, 355: 1713-1728
CrossRef Google scholar
[22]
Simons J. Minimal varieties in Riemannian manifolds. Ann Math, 1968, 83: 62-105
CrossRef Google scholar
[23]
Yano K. On harmonic and Killing vector fields. Ann Math, 1952, 55: 38-45
CrossRef Google scholar
[24]
Yano K. Integral Formulas in Riemannian Geometry. Pure and Applied Mathematics, No 1. New York: Marcel Dekker, Inc, 1970

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(177 KB)

Accesses

Citations

Detail

Sections
Recommended

/