
Spaces of type BLO on non-homogeneous metric measure
Haibo Lin, Dachun Yang
Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 271-292.
Spaces of type BLO on non-homogeneous metric measure
Let ([inline-graphic not available: see fulltext], d, µ) be a metric measure space satisfying the so-called upper doubling condition and the geometrically doubling condition. In this paper, we introduce the space RBLO(µ) and prove that it is a subset of the known space RBMO(µ) in this context. Moreover, we establish several useful characterizations for the space RBLO(µ). As an application, we obtain the boundedness of the maximal Calderón-Zygmund operators from L ∞(µ) to RBLO(µ).
Upper doubling / geometrically doubling / RBLO(µ) / maximal operator / Calderón-Zygmund maximal operator
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
Hytönen T, Liu Suile, Yang Dachun, Yang Dongyong. Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces. Canad J Math (to appear) or arXiv: 1011.2937
|
[10.] |
Hytönen T, Martikainen H. Non-homogeneous Tb theorem and random dyadic cubes on metric measure spaces. arXiv: 0911.4387
|
[11.] |
Hytönen T, Yang Dachun, Yang Dongyong. The Hardy space H 1 on non-homogeneous metric spaces. arXiv: 1008.3831
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
Volberg A, Wick B D. Bergman-type singular operators and the characterization of Carleson measures for Besov-Sobolev spaces on the complex ball. Amer J Math (to appear) or arXiv: 0910.1142
|
[21.] |
|
/
〈 |
|
〉 |