Spaces of type BLO on non-homogeneous metric measure
Haibo LIN, Dachun YANG
Spaces of type BLO on non-homogeneous metric measure
Let be a metric measure space satisfying the so-called upper doubling condition and the geometrically doubling condition. In this paper, we introduce the space RBLO(μ) and prove that it is a subset of the known space RBMO(μ) in this context. Moreover, we establish several useful characterizations for the space RBLO(μ). As an application, we obtain the boundedness of the maximal Calderón-Zygmund operators from to RBLO(μ).
Upper doubling / geometrically doubling / RBLO(μ) / maximal operator / Calderón-Zygmund maximal operator
[1] |
Benett C. Another characterization of BLO. Proc Amer Math Soc, 1982, 85: 552-556
|
[2] |
Coifman R R, Rochberg R. Another characterization of BMO. Proc Amer Math Soc, 1980, 79: 249-254
|
[3] |
Coifman R R, Weiss G. Analyse Harmonique Non-commutative sur Certains Espaces Homogènes. Lecture Notes in Math, 242, Berlin: Springer, 1971
|
[4] |
Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569-645
CrossRef
Google scholar
|
[5] |
Hajłasz P, Koskela P. Sobolev met Poincaré. Mem Amer Math Soc, Vol 145, No 688. Providence: Amer Math Soc, 2000
|
[6] |
Heinenon J. Lectures on Analysis on Metric Spaces. New York: Springer-Verlag, 2001
|
[7] |
Hu Guoen, Yang Dachun, Yang Dongyong. h1, bmo, blo and Littlewood-Paley g-functions with non-doubling measures. Rev Mat Ibero, 2009, 25: 595-667
|
[8] |
Hytönen T. A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ Mat, 2010, 54: 485-504
|
[9] |
Hytönen T, Liu Suile, Yang Dachun, Yang Dongyong. Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces. Canad J Math (to appear) or arXiv: 1011.2937
|
[10] |
Hytönen T, Martikainen H. Non-homogeneous Tb theorem and random dyadic cubes on metric measure spaces. arXiv: 0911.4387
|
[11] |
Hytönen T, Yang Dachun, Yang Dongyong. The Hardy space H1 on non-homogeneous metric spaces. arXiv: 1008.3831
|
[12] |
Jiang Y. Spaces of type BLO for non-doubling measures. Proc Amer Math Soc, 2005, 133: 2101-2107
CrossRef
Google scholar
|
[13] |
Leckband M A. Structure results on the maximal Hilbert transform and two-weight norm inequalities. Indiana Univ Math J, 1985, 34: 259-275
CrossRef
Google scholar
|
[14] |
Luukkainen J, Saksman E. Every complete doubling metric space carries a doubling measure. Proc Amer Math Soc, 1998, 126: 531-534
CrossRef
Google scholar
|
[15] |
Nazarov F, Treil S, Volberg V. The Tb-theorem on non-homogeneous spaces. Acta Math, 2003, 190: 151-239
CrossRef
Google scholar
|
[16] |
Stein E M. Singular integral, harmonic functions, and differentiability properties of functions of several variables. In: Calderón A P, ed. Singular Integrals. Proc Symp Pure Math, 10. Providence: Amer Math Soc, 1967, 316-335
|
[17] |
Tolsa X. BMO, H1 and Calderón-Zygmund operators for non doubling measures. Math Ann, 2001, 319: 89-149
CrossRef
Google scholar
|
[18] |
Tolsa X. Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math, 2003, 190: 105-149
CrossRef
Google scholar
|
[19] |
Tolsa X. Analytic capacity and Calderón-Zygmund theory with non doubling measures. Seminar of Mathematical Analysis. Colecc Abierta, 71. Seville: Univ Sevilla Secr Publ, 2004, 239-271
|
[20] |
Volberg A, Wick B D. Bergman-type singular operators and the characterization of Carleson measures for Besov-Sobolev spaces on the complex ball. Amer J Math (to appear) or arXiv: 0910.1142
|
[21] |
Wu J. Hausdorff dimension and doubling measures on metric spaces. Proc Amer Math Soc, 1998, 126: 1453-1459
CrossRef
Google scholar
|
/
〈 | 〉 |