Spaces of type BLO on non-homogeneous metric measure
Haibo Lin , Dachun Yang
Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 271 -292.
Spaces of type BLO on non-homogeneous metric measure
Let ([inline-graphic not available: see fulltext], d, µ) be a metric measure space satisfying the so-called upper doubling condition and the geometrically doubling condition. In this paper, we introduce the space RBLO(µ) and prove that it is a subset of the known space RBMO(µ) in this context. Moreover, we establish several useful characterizations for the space RBLO(µ). As an application, we obtain the boundedness of the maximal Calderón-Zygmund operators from L ∞(µ) to RBLO(µ).
Upper doubling / geometrically doubling / RBLO(µ) / maximal operator / Calderón-Zygmund maximal operator
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Hytönen T, Liu Suile, Yang Dachun, Yang Dongyong. Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces. Canad J Math (to appear) or arXiv: 1011.2937 |
| [10] |
Hytönen T, Martikainen H. Non-homogeneous Tb theorem and random dyadic cubes on metric measure spaces. arXiv: 0911.4387 |
| [11] |
Hytönen T, Yang Dachun, Yang Dongyong. The Hardy space H 1 on non-homogeneous metric spaces. arXiv: 1008.3831 |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
Volberg A, Wick B D. Bergman-type singular operators and the characterization of Carleson measures for Besov-Sobolev spaces on the complex ball. Amer J Math (to appear) or arXiv: 0910.1142 |
| [21] |
|
/
| 〈 |
|
〉 |