A class of new braided Hopf algebras

Tianshui Ma , Haiying Li , Shuanhong Wang

Front. Math. China ›› 2010, Vol. 6 ›› Issue (2) : 293 -308.

PDF (180KB)
Front. Math. China ›› 2010, Vol. 6 ›› Issue (2) : 293 -308. DOI: 10.1007/s11464-011-0096-y
Research Article
RESEARCH ARTICLE

A class of new braided Hopf algebras

Author information +
History +
PDF (180KB)

Abstract

We give the necessary and sufficient conditions for a general crossed product algebra equipped with the usual tensor product coalgebra structure to be a Hopf algebra. Furthermore, we obtain the necessary and sufficient conditions for the general crossed product Hopf algebra to be a braided Hopf algebra which generalizes some known results.

Keywords

Crossed product / braided Hopf algebra / twisted product

Cite this article

Download citation ▾
Tianshui Ma, Haiying Li, Shuanhong Wang. A class of new braided Hopf algebras. Front. Math. China, 2010, 6(2): 293-308 DOI:10.1007/s11464-011-0096-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beattie M., Bulacu D. Braided Hopf algebras obtained from coquasitriangular Hopf algebra. Commun Math Phys, 2008, 282, 115-160

[2]

Blattner R. J., Cohen M., Montgomery S. Crossed products and inner actions of Hopf algebras. Trans AMS, 1986, 289, 671-711

[3]

Brzeziński T. Crossed products by a coalgebra. Comm Algebra, 1997, 25, 3551-3575

[4]

Caenepeel S., Ion B., Militaru G., Zhu S. The factorization problem and the smash biproduct of algebras and coalgebras. Algebra Represent Theory, 2000, 3, 19-42

[5]

Doi Y. Braided bialgebras and quadratic bialgebras. Comm Algebra, 1993, 21 5 1731-1749

[6]

Doi Y., Takeuchi M. Cleft comodule algebras for a bialgebra. Comm Algebra, 1986, 14, 801-818

[7]

Doi Y., Takeuchi M. Multiplication alteration by two-cocycles—The quantum version. Comm Algebra, 1994, 22, 5715-5732

[8]

Larson R., Towber J. Two dual classes of bialgebras related to the concepts of “quantum groups” and “quantum Lie algebras”. Comm Algebra, 1991, 19, 3295-3345

[9]

Molnar R. K. Semi-direct products of Hopf algebras. J Algebra, 1977, 47, 29-51

[10]

Montgomery S. Hopf Algebras and Their Actions on Rings, 1993, Providence: AMS.

[11]

Sweedler M. E. Hopf Algebras, 1969, New York: Benjamin.

[12]

Wang S. H. On braided Hopf algebra structures over the twisted smash products. Comm Algebra, 1999, 27, 5561-5573

[13]

Wang S. H., Li J. Q. On the twisted smash product for bimodule algebras and Drinfel’d double. Comm Algebra, 1998, 26, 2435-2444

AI Summary AI Mindmap
PDF (180KB)

916

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/