A class of new braided Hopf algebras

Tianshui MA, Haiying LI, Shuanhong WANG

PDF(180 KB)
PDF(180 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 293-308. DOI: 10.1007/s11464-011-0096-y
RESEARCH ARTICLE
RESEARCH ARTICLE

A class of new braided Hopf algebras

Author information +
History +

Abstract

We give the necessary and sufficient conditions for a general crossed product algebra equipped with the usual tensor product coalgebra structure to be a Hopf algebra. Furthermore, we obtain the necessary and sufficient conditions for the general crossed product Hopf algebra to be a braided Hopf algebra which generalizes some known results.

Keywords

Crossed product / braided Hopf algebra / twisted product

Cite this article

Download citation ▾
Tianshui MA, Haiying LI, Shuanhong WANG. A class of new braided Hopf algebras. Front Math Chin, 2011, 6(2): 293‒308 https://doi.org/10.1007/s11464-011-0096-y

References

[1]
Beattie M, Bulacu D. Braided Hopf algebras obtained from coquasitriangular Hopf algebra. Commun Math Phys, 2008, 282: 115-160
CrossRef Google scholar
[2]
Blattner R J, Cohen M, Montgomery S. Crossed products and inner actions of Hopf algebras. Trans AMS, 1986, 289: 671-711
CrossRef Google scholar
[3]
Brzeziński T. Crossed products by a coalgebra. Comm Algebra, 1997, 25: 3551-3575
CrossRef Google scholar
[4]
Caenepeel S, Ion B, Militaru G, Zhu S. The factorization problem and the smash biproduct of algebras and coalgebras. Algebra Represent Theory, 2000, 3: 19-42
CrossRef Google scholar
[5]
Doi Y. Braided bialgebras and quadratic bialgebras. Comm Algebra, 1993, 21(5): 1731-1749
CrossRef Google scholar
[6]
Doi Y, Takeuchi M. Cleft comodule algebras for a bialgebra. Comm Algebra, 1986, 14: 801-818
CrossRef Google scholar
[7]
Doi Y, Takeuchi M, Multiplication alteration by two-cocycles—The quantum version. Comm Algebra, 1994, 22: 5715-5732
CrossRef Google scholar
[8]
Larson R, Towber J. Two dual classes of bialgebras related to the concepts of “quantum groups” and “quantum Lie algebras”. Comm Algebra, 1991, 19: 3295-3345
CrossRef Google scholar
[9]
Molnar R K. Semi-direct products of Hopf algebras. J Algebra, 1977, 47: 29-51
CrossRef Google scholar
[10]
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Lectures in Math, Vol 82. Providence: AMS, 1993
[11]
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
[12]
Wang S H. On braided Hopf algebra structures over the twisted smash products. Comm Algebra, 1999, 27: 5561-5573
CrossRef Google scholar
[13]
Wang S H, Li J Q. On the twisted smash product for bimodule algebras and Drinfel’d double. Comm Algebra, 1998, 26: 2435-2444
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(180 KB)

Accesses

Citations

Detail

Sections
Recommended

/