Collision local times of two independent fractional Brownian motions

Xiangjun Wang , Jingjun Guo , Guo Jiang

Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 325 -338.

PDF (198KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 325 -338. DOI: 10.1007/s11464-011-0095-z
Research Article
RESEARCH ARTICLE

Collision local times of two independent fractional Brownian motions

Author information +
History +
PDF (198KB)

Abstract

In this paper, the collision local times for two independent fractional Brownian motions are considered as generalized white noise functionals. Moreover, the collision local times exist in L 2 under mild conditions and chaos expansions are also given.

Keywords

Fractional Brownian motion / collision local time / white noise functional

Cite this article

Download citation ▾
Xiangjun Wang, Jingjun Guo, Guo Jiang. Collision local times of two independent fractional Brownian motions. Front. Math. China, 2011, 6(2): 325-338 DOI:10.1007/s11464-011-0095-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albeverio S., Oliveira M., Streit L. Intersection local times of independent Brownian motions as generalized white noise functionals. Acta Appl Math, 2001, 69, 221-241

[2]

Ayache A., Wu D., Xiao Y. Joint continuity of the local times of fractional Brownian sheets. Ann Inst H Poin Prob Stat, 2008, 44, 727-748

[3]

Bender C. An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter. Stoch Processes Appl, 2003, 104, 81-106

[4]

Biagini F., Hu Y., Φksendal B., Zhang T. Stochastic Calculus for Fractional Brownian Motion and Applications, 2008, London: Springer-Verlag

[5]

Drumond C., Oliveira M., Silva J. Bernido C. C., Bernido M. V. Intersection local times of fractional Brownian motions with H ∈ (0, 1) as generalized white noise functionals. 5th Jagna International Workshop Stochastic and Quantum Dynamics of Biomolecular Systems, 2008, Melville: American Institute of Physics 34-45

[6]

Faria M., Hida T., Streit L., Watanabe H. Intersection local times as generalized white noise functionals. Acta Appl Math, 1997, 46, 351-362

[7]

Guo J, Xiao Y. Multiple intersection local times of fractional Brownian motion. J of Math (to appear)

[8]

Hu Y. Self-intersection local time of fractional Brownian motions-via chaos expansion. J Math Kyoto Univ, 2001, 41, 233-250

[9]

Hu Y., Nualart D. Regularity of renormalized self-intersection local time for fractional Brownian motion. Commun Inf Syst, 2007, 7, 21-30

[10]

Huang Z., Li C. On fractional stable processes and sheets: white noise approach. J Math Anal Appl, 2007, 325, 624-635

[11]

Imkeller P., Yan J. Multiple intersection local time of planar Brownian motion as a particular Hida distribution. J Func Anal, 1996, 140, 256-273

[12]

Jiang Y., Wang Y. On the collision local time of fractional Brownian motions. Chin Ann Math, 2007, 28B, 311-320

[13]

Marcus M., Rosen J. Additive functionals of several Lévy processes and intersection local times. Ann Prob, 1999, 27, 1643-1678

[14]

Nualart D., Ortiz-Latorre S. Intersection local time for two independent fractional Brownian motions. J Theo Prob, 2007, 20, 759-767

[15]

Obata N. White Noise Calculus and Fock Space, 1994, Berlin: Springer-Verlag.

[16]

Oliveira M., Silva J., Streit L. Intersection local times of independent fractional Brownian motions as generalized white noise functionals. Acta Appl Math, 2011, 113, 17-39

[17]

Watanabe H. The local time of self-intersections of Brownian motions as generalized Brownian functionals. Lett in Math Phys, 1991, 23, 1-9

AI Summary AI Mindmap
PDF (198KB)

934

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/