A lowest order divergence-free finite element on rectangular grids

Yunqing Huang , Shangyou Zhang

Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 253 -270.

PDF (873KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 253 -270. DOI: 10.1007/s11464-011-0094-0
Research Article
RESEARCH ARTICLE

A lowest order divergence-free finite element on rectangular grids

Author information +
History +
PDF (873KB)

Abstract

It is shown that the conforming Q 2,1;1,2-Q1 mixed element is stable, and provides optimal order of approximation for the Stokes equations on rectangular grids. Here, Q 2,1;1,2 = Q 2,1 × Q 1,2, and Q 2,1 denotes the space of continuous piecewise-polynomials of degree 2 or less in the x direction but of degree 1 in the y direction. Q1 is the space of discontinuous bilinear polynomials, with spurious modes filtered. To be precise, Q1 is the divergence of the discrete velocity space Q 2,1;1,2. Therefore, the resulting finite element solution for the velocity is divergence-free pointwise, when solving the Stokes equations. This element is the lowest order one in a family of divergence-free element, similar to the families of the Bernardi-Raugel element and the Raviart-Thomas element.

Keywords

Mixed finite element / Stokes / divergence-free element / quadrilateral element / rectangular grid

Cite this article

Download citation ▾
Yunqing Huang, Shangyou Zhang. A lowest order divergence-free finite element on rectangular grids. Front. Math. China, 2011, 6(2): 253-270 DOI:10.1007/s11464-011-0094-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ainsworth M., Coggins P. A uniformly stable family of mixed hp-finite elements with continuous pressures for incompressible flow. IMA J Num Anal, 2002, 22, 307-327

[2]

Arnold D N, Qin J. Quadratic velocity/linear pressure Stokes elements. In: Vichnevetsky R, Knight D, Richter G, eds. Advances in Computer Methods for Partial Differential Equations VII, IMACS. 1992, 28–34

[3]

Arnold D. N., Scott L. R., Vogelius M. Regular inversion of the divergence operator with Dirichlet conditions on a polygon. Ann Sc Norm Super Pisa, C1, Sci, IV Ser, 1988, 15, 169-192

[4]

Bernardi C., Maday Y. Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math Meth Appl Sci, 1999, 9, 395-414

[5]

Bernardi C., Raugel B. Analysis of some finite elements of the Stokes problem. Math Comp, 1985, 44, 71-79

[6]

Brenner S. C. An optimal-order multigrid method for P1 nonconforming finite elements. Math Comp, 1989, 52, 1-15

[7]

Brenner S. C., Scott L. R. The Mathematical Theory of Finite Element Methods, 1994, New York: Springer-Verlag.

[8]

Brezzi F., Falk F. Stability of higher-order Hood-Taylor methods. SIAM J Numer Anal, 1991, 28 3 581-590

[9]

Brezzi F., Fortin M. Mixed and Hybrid Finite Element Methods, 1991, Berlin: Springer.

[10]

Carrero J., Cockburn B., Schötzau D. Hybridized globally divergence-free LDG methods. I. The Stokes problem. Math Comp, 2006, 75, 533-563

[11]

Ciarlet P. G. The Finite Element Method for Elliptic Problems, 1978, Amsterdam: North-Holland.

[12]

Cockburn C., Li F., Shu C.-W. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J Comput Phys, 2004, 194, 588-610

[13]

Fortin M., Glowinski R. Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-value Problems, 1983, Amsterdam: North Holland.

[14]

Karakashian O., Katsaounis T. Numerical simulation of incompressible fluid flow using locally solenoidal elements. Comput Math Appl, 2006, 51, 1551-1570

[15]

Li F., Shu C.-W. Locally divergence-free discontinuous Galerkin methods for MHD equations. J Sci Comput, 2005, 22–23, 413-442

[16]

Nédélec J.-C. Mixed finite elements in ℝ3. Numer Math, 1980, 35, 315-341

[17]

Oswald P. Remarks on multilevel bases for divergence-free finite elements. Numerical Algorithms, 2001, 27, 131-152

[18]

Qin J. On the Convergence of Some Low Order Mixed Finite Elements for Incompressible Fluids. Thesis. Pennsylvania State University, 1994

[19]

Qin J., Zhang S. Stability of the finite elements 9/(4c+1) and 9/5c for stationary Stokes equations. Computers and Structures, 2005, 84, 70-77

[20]

Qin J., Zhang S. Stability and approximability of the P1-P0 element for Stokes equations. Int J Numer Meth Fluids, 2007, 54, 497-515

[21]

Raviart P. A., Girault V. Finite Element Methods for Navier-Stokes Equations, 1986, Berlin: Springer.

[22]

Raviart P. A., Thomas J. A mixed finite element method for 2nd order elliptic problems. Mathematics Aspects of Finite Element Methods, 1977, New York: Springer-Verlag 292-315

[23]

Scott L. R., Vogelius M. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO, Modelisation Math Anal Numer, 1985, 19, 111-143

[24]

Scott L. R., Vogelius M. Conforming finite element methods for incompressible and nearly incompressible continua. Lectures in Applied Mathematics, 1985, 22, 221-244

[25]

Scott L. R., Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comp, 1990, 54, 483-493

[26]

Scott L R, Zhang S. Multilevel iterated penalty method for mixed elements. In: The Proceedings for the Ninth International Conference on Domain Decomposition Methods, Bergen. 1998, 133–139

[27]

Stenberg R., Suri M. Mixed hp finite element methods for problems in elasticity and Stokes flow. Numer Math, 1996, 72, 367-389

[28]

Ye X., Anderson G. The derivation of minimal support basis functions for the discrete divergence operator. J Compu Appl Math, 1995, 61, 105-116

[29]

Zhang S. A new family of stable mixed finite elements for 3D Stokes equations. Math Comp, 2005, 74 250 543-554

[30]

Zhang S. On the P1 Powell-Sabin divergence-free finite element for the Stokes equations. J Comp Math, 2008, 26, 456-470

[31]

Zhang S. A family of Q k+1,k × Q k,k+1 divergence-free finite elements on rectangular grids. SIAM J Num Anal, 2009, 47, 2090-2107

AI Summary AI Mindmap
PDF (873KB)

937

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/