PDF
(873KB)
Abstract
It is shown that the conforming Q 2,1;1,2-Q′1 mixed element is stable, and provides optimal order of approximation for the Stokes equations on rectangular grids. Here, Q 2,1;1,2 = Q 2,1 × Q 1,2, and Q 2,1 denotes the space of continuous piecewise-polynomials of degree 2 or less in the x direction but of degree 1 in the y direction. Q′1 is the space of discontinuous bilinear polynomials, with spurious modes filtered. To be precise, Q′1 is the divergence of the discrete velocity space Q 2,1;1,2. Therefore, the resulting finite element solution for the velocity is divergence-free pointwise, when solving the Stokes equations. This element is the lowest order one in a family of divergence-free element, similar to the families of the Bernardi-Raugel element and the Raviart-Thomas element.
Keywords
Mixed finite element
/
Stokes
/
divergence-free element
/
quadrilateral element
/
rectangular grid
Cite this article
Download citation ▾
Yunqing Huang, Shangyou Zhang.
A lowest order divergence-free finite element on rectangular grids.
Front. Math. China, 2011, 6(2): 253-270 DOI:10.1007/s11464-011-0094-0
| [1] |
Ainsworth M., Coggins P. A uniformly stable family of mixed hp-finite elements with continuous pressures for incompressible flow. IMA J Num Anal, 2002, 22, 307-327
|
| [2] |
Arnold D N, Qin J. Quadratic velocity/linear pressure Stokes elements. In: Vichnevetsky R, Knight D, Richter G, eds. Advances in Computer Methods for Partial Differential Equations VII, IMACS. 1992, 28–34
|
| [3] |
Arnold D. N., Scott L. R., Vogelius M. Regular inversion of the divergence operator with Dirichlet conditions on a polygon. Ann Sc Norm Super Pisa, C1, Sci, IV Ser, 1988, 15, 169-192
|
| [4] |
Bernardi C., Maday Y. Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math Meth Appl Sci, 1999, 9, 395-414
|
| [5] |
Bernardi C., Raugel B. Analysis of some finite elements of the Stokes problem. Math Comp, 1985, 44, 71-79
|
| [6] |
Brenner S. C. An optimal-order multigrid method for P1 nonconforming finite elements. Math Comp, 1989, 52, 1-15
|
| [7] |
Brenner S. C., Scott L. R. The Mathematical Theory of Finite Element Methods, 1994, New York: Springer-Verlag.
|
| [8] |
Brezzi F., Falk F. Stability of higher-order Hood-Taylor methods. SIAM J Numer Anal, 1991, 28 3 581-590
|
| [9] |
Brezzi F., Fortin M. Mixed and Hybrid Finite Element Methods, 1991, Berlin: Springer.
|
| [10] |
Carrero J., Cockburn B., Schötzau D. Hybridized globally divergence-free LDG methods. I. The Stokes problem. Math Comp, 2006, 75, 533-563
|
| [11] |
Ciarlet P. G. The Finite Element Method for Elliptic Problems, 1978, Amsterdam: North-Holland.
|
| [12] |
Cockburn C., Li F., Shu C.-W. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J Comput Phys, 2004, 194, 588-610
|
| [13] |
Fortin M., Glowinski R. Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-value Problems, 1983, Amsterdam: North Holland.
|
| [14] |
Karakashian O., Katsaounis T. Numerical simulation of incompressible fluid flow using locally solenoidal elements. Comput Math Appl, 2006, 51, 1551-1570
|
| [15] |
Li F., Shu C.-W. Locally divergence-free discontinuous Galerkin methods for MHD equations. J Sci Comput, 2005, 22–23, 413-442
|
| [16] |
Nédélec J.-C. Mixed finite elements in ℝ3. Numer Math, 1980, 35, 315-341
|
| [17] |
Oswald P. Remarks on multilevel bases for divergence-free finite elements. Numerical Algorithms, 2001, 27, 131-152
|
| [18] |
Qin J. On the Convergence of Some Low Order Mixed Finite Elements for Incompressible Fluids. Thesis. Pennsylvania State University, 1994
|
| [19] |
Qin J., Zhang S. Stability of the finite elements 9/(4c+1) and 9/5c for stationary Stokes equations. Computers and Structures, 2005, 84, 70-77
|
| [20] |
Qin J., Zhang S. Stability and approximability of the P1-P0 element for Stokes equations. Int J Numer Meth Fluids, 2007, 54, 497-515
|
| [21] |
Raviart P. A., Girault V. Finite Element Methods for Navier-Stokes Equations, 1986, Berlin: Springer.
|
| [22] |
Raviart P. A., Thomas J. A mixed finite element method for 2nd order elliptic problems. Mathematics Aspects of Finite Element Methods, 1977, New York: Springer-Verlag 292-315
|
| [23] |
Scott L. R., Vogelius M. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO, Modelisation Math Anal Numer, 1985, 19, 111-143
|
| [24] |
Scott L. R., Vogelius M. Conforming finite element methods for incompressible and nearly incompressible continua. Lectures in Applied Mathematics, 1985, 22, 221-244
|
| [25] |
Scott L. R., Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comp, 1990, 54, 483-493
|
| [26] |
Scott L R, Zhang S. Multilevel iterated penalty method for mixed elements. In: The Proceedings for the Ninth International Conference on Domain Decomposition Methods, Bergen. 1998, 133–139
|
| [27] |
Stenberg R., Suri M. Mixed hp finite element methods for problems in elasticity and Stokes flow. Numer Math, 1996, 72, 367-389
|
| [28] |
Ye X., Anderson G. The derivation of minimal support basis functions for the discrete divergence operator. J Compu Appl Math, 1995, 61, 105-116
|
| [29] |
Zhang S. A new family of stable mixed finite elements for 3D Stokes equations. Math Comp, 2005, 74 250 543-554
|
| [30] |
Zhang S. On the P1 Powell-Sabin divergence-free finite element for the Stokes equations. J Comp Math, 2008, 26, 456-470
|
| [31] |
Zhang S. A family of Q k+1,k × Q k,k+1 divergence-free finite elements on rectangular grids. SIAM J Num Anal, 2009, 47, 2090-2107
|