A lowest order divergence-free finite element on rectangular grids

Yunqing HUANG, Shangyou ZHANG

Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 253-270.

PDF(873 KB)
Front. Math. China All Journals
PDF(873 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 253-270. DOI: 10.1007/s11464-011-0094-0
RESEARCH ARTICLE
RESEARCH ARTICLE

A lowest order divergence-free finite element on rectangular grids

Author information +
History +

Abstract

It is shown that the conforming Q2,1;1,2-Q1 mixed element is stable, and provides optimal order of approximation for the Stokes equations on rectangular grids. Here, Q2,1;1,2=Q2,1×Q1,2, and Q2,1 denotes the space of continuous piecewise-polynomials of degree 2 or less in the x direction but of degree 1 in the y direction. Q1 is the space of discontinuous bilinear polynomials, with spurious modes filtered. To be precise, Q1 is the divergence of the discrete velocity space Q2,1;1,2. Therefore, the resulting finite element solution for the velocity is divergence-free pointwise, when solving the Stokes equations. This element is the lowest order one in a family of divergence-free element, similar to the families of the Bernardi-Raugel element and the Raviart-Thomas element.

Keywords

Mixed finite element / Stokes / divergence-free element / quadrilateral element / rectangular grid

Cite this article

Download citation ▾
Yunqing HUANG, Shangyou ZHANG. A lowest order divergence-free finite element on rectangular grids. Front Math Chin, 2011, 6(2): 253‒270 https://doi.org/10.1007/s11464-011-0094-0
This is a preview of subscription content, contact us for subscripton.

References

[1]
Ainsworth M, Coggins P. A uniformly stable family of mixed hp-finite elements with continuous pressures for incompressible flow. IMA J Num Anal, 2002, 22: 307-327
CrossRef Google scholar
[2]
Arnold D N, Qin J. Quadratic velocity/linear pressure Stokes elements. In: Vichnevetsky R, Knight D, Richter G, eds. Advances in Computer Methods for Partial Differential Equations VII, IMACS. 1992, 28-34
[3]
Arnold D N, Scott L R, Vogelius M. Regular inversion of the divergence operator with Dirichlet conditions on a polygon. Ann Sc Norm Super Pisa, C1, Sci, IV Ser, 1988, 15: 169-192
[4]
Bernardi C, Maday Y. Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math Meth Appl Sci, 1999, 9: 395-414
CrossRef Google scholar
[5]
Bernardi C, Raugel B. Analysis of some finite elements of the Stokes problem. Math Comp, 1985, 44: 71-79
CrossRef Google scholar
[6]
Brenner S C. An optimal-order multigrid method for P1 nonconforming finite elements. Math Comp, 1989, 52: 1-15
[7]
Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods. New York: Springer-Verlag, 1994
[8]
Brezzi F, Falk F. Stability of higher-order Hood-Taylor methods. SIAM J Numer Anal, 1991, 28(3): 581-590
CrossRef Google scholar
[9]
Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Berlin: Springer, 1991
[10]
Carrero J, Cockburn B, Schötzau D. Hybridized globally divergence-free LDG methods. I. The Stokes problem. Math Comp, 2006, 75: 533-563
CrossRef Google scholar
[11]
Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978
[12]
Cockburn C, Li F, Shu C-W. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J Comput Phys, 2004, 194: 588-610
CrossRef Google scholar
[13]
Fortin M, Glowinski R. Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-value Problems. Amsterdam: North Holland, 1983
[14]
Karakashian O, Katsaounis T. Numerical simulation of incompressible fluid flow using locally solenoidal elements. Comput Math Appl, 2006, 51: 1551-1570
CrossRef Google scholar
[15]
Li F, Shu C-W. Locally divergence-free discontinuous Galerkin methods for MHD equations. J Sci Comput, 2005, 22-23: 413-442
CrossRef Google scholar
[16]
Nédélec J-C. Mixed finite elements in ℝ3. Numer Math, 1980, 35: 315-341
CrossRef Google scholar
[17]
Oswald P. Remarks on multilevel bases for divergence-free finite elements. Numerical Algorithms, 2001, 27: 131-152
CrossRef Google scholar
[18]
Qin J. On the Convergence of Some Low Order Mixed Finite Elements for Incompressible Fluids. Thesis. Pennsylvania State University, 1994
[19]
Qin J, Zhang S. Stability of the finite elements 9/(4c+1) and 9/5c for stationary Stokes equations. Computers and Structures, 2005, 84: 70-77
CrossRef Google scholar
[20]
Qin J, Zhang S. Stability and approximability of the P1-P0 element for Stokes equations. Int J Numer Meth Fluids, 2007, 54: 497-515
CrossRef Google scholar
[21]
Raviart P A, Girault V. Finite Element Methods for Navier-Stokes Equations. Berlin: Springer, 1986
[22]
Raviart P A, Thomas J. A mixed finite element method for 2nd order elliptic problems. In: Mathematics Aspects of Finite Element Methods. Lecture Notes in Math, Vol 606. New York: Springer-Verlag, 1977, 292-315
CrossRef Google scholar
[23]
Scott L R, Vogelius M. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO, Modelisation Math Anal Numer, 1985, 19: 111-143
[24]
Scott L R, Vogelius M. Conforming finite element methods for incompressible and nearly incompressible continua. In: Lectures in Applied Mathematics, 22. 1985, 221-244
[25]
Scott L R, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comp, 1990, 54: 483-493
CrossRef Google scholar
[26]
Scott L R, Zhang S. Multilevel iterated penalty method for mixed elements. In: The Proceedings for the Ninth International Conference on Domain Decomposition Methods, Bergen. 1998, 133-139
[27]
Stenberg R, Suri M. Mixed hp finite element methods for problems in elasticity and Stokes flow. Numer Math, 1996, 72: 367-389
CrossRef Google scholar
[28]
Ye X, Anderson G. The derivation of minimal support basis functions for the discrete divergence operator. J Compu Appl Math, 1995, 61: 105-116
CrossRef Google scholar
[29]
Zhang S. A new family of stable mixed finite elements for 3D Stokes equations. Math Comp, 2005, 74 (250): 543-554
CrossRef Google scholar
[30]
Zhang S. On the P1 Powell-Sabin divergence-free finite element for the Stokes equations. J Comp Math, 2008, 26: 456-470
[31]
Zhang S. A family of Qk+1,k × Qk,k+1 divergence-free finite elements on rectangular grids. SIAM J Num Anal, 2009, 47: 2090-2107
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(873 KB)

815

Accesses

22

Citations

Detail

Sections
Recommended

/