Regularity for weakly (K1,K2(x))-quasiregular mappings of several n-dimensional variables

Hongya GAO, Qiuhua HUANG, Fang QIAN

PDF(173 KB)
PDF(173 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 241-251. DOI: 10.1007/s11464-011-0093-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Regularity for weakly (K1,K2(x))-quasiregular mappings of several n-dimensional variables

Author information +
History +

Abstract

The definition for weakly (K1,K2(x))-quasiregular mappings of several n-dimensional variables is given. A regularity property is obtained by using the stability result of Hodge decomposition, some analytical tools of Sobolev spaces, and differential geometry, which can be regarded as a generalization of the results due to T. Iwaniec and Hongya Gao.

Keywords

Weakly (K1 / K2(x))-quasiregular mapping of several n-dimensional variables / weak reverse Hölder inequality / regularity

Cite this article

Download citation ▾
Hongya GAO, Qiuhua HUANG, Fang QIAN. Regularity for weakly (K1,K2(x))-quasiregular mappings of several n-dimensional variables. Front Math Chin, 2011, 6(2): 241‒251 https://doi.org/10.1007/s11464-011-0093-1

References

[1]
Dairbekov N S. The concept of a quasiregular mapping of several n-dimensional variables. Dokl. RAN, 1992, 423(3): 511-514
[2]
Dairbekov N S. Quasiregular mappings of several n-dimensional variables. Siberian Mathematical Journal, 1993, 34(4): 87-102
CrossRef Google scholar
[3]
Dairbekov N S. Stability of classes of quasiregular mappings in several spatial variables. Siberian Mathematical Journal, 1995, 36(1): 43-54
CrossRef Google scholar
[4]
Donalson S K, Sullivan D P. Qasiconformal conformal 4-manifolds. Acta Math, 1989, 163: 181-252
[5]
Gao Hongya. Regularity for weakly (K1,K2)-quasiregular mappings. Sci in China, Ser A, 2003, 46(4): 499-505
[6]
Gao Hongya, Li Tong. On degenerate weakly (K1,K2)-quasiregular mappings. Acta Math Sci, 2008, 28B(1): 163-170
CrossRef Google scholar
[7]
Gao Hongya, Liu Haihong, Zhou Shuqing. Higher integrability for weakly (K1,K2(x))-quasiregular mappings. Acta Math Sin, 2009, 52(5): 847-852 (in Chinese)
[8]
Gao Hongya, Zhou Shuqing, Meng Yuqin. A new inequality for weakly (K1,K2)-quasiregular mappings. Acta Math Sin (Eng Ser), 2007, 23(12): 2241-2246
CrossRef Google scholar
[9]
Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Ann of Math Stud, 105. Princeton: Princeton Univ Press, 1983
[10]
Iwaniec T. p-harmonic tensors and quasiregular mappings. Ann of Math, 1992, 136(3): 589-624
CrossRef Google scholar
[11]
Iwaniec T, Martin G. Quasiregular mappings in even dimensions. Acta Math, 1993, 170: 29-81
CrossRef Google scholar
[12]
Iwaniec T, Martin G. Geometric Function and Non-linear Analysis. Oxford: Clarendon Press, 2001
[13]
Iwaniec T, Sbordone C. On the integrability of the Jacobian under minimal hypotheses. Arch Rational Mech Anal, 1992, 119: 129-143
CrossRef Google scholar
[14]
Martio O, Rickman S, Väisälä J. Definitions for quasiregular mappings. Ann Acad Sci Fenn, Ser AI, 1969, 448: 1-40
[15]
Martio O, Rickman S, Väisälä J. Distortions and singularities of quasiregular mappings. Ann Acad Sci Fenn, Ser AI, 1970, 465: 1-13
[16]
Martio O, Rickman S, Väisälä J. Topological and metric properties of quasiregular mappings. Ann Acad Sci Fenn, Ser AI, 1971, 488: 1-31
[17]
Reshetnyak Yu G. Space Mappings with Bounded Distortion. Trans Math Monographs, Vol 73. Providence: Amer Math Soc, 1989

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(173 KB)

Accesses

Citations

Detail

Sections
Recommended

/