Regularity for weakly (K 1, K 2(x))-quasiregular mappings of several n-dimensional variables

Hongya Gao , Qiuhua Huang , Fang Qian

Front. Math. China ›› 2010, Vol. 6 ›› Issue (2) : 241 -251.

PDF (173KB)
Front. Math. China ›› 2010, Vol. 6 ›› Issue (2) : 241 -251. DOI: 10.1007/s11464-011-0093-1
Research Article
RESEARCH ARTICLE

Regularity for weakly (K 1, K 2(x))-quasiregular mappings of several n-dimensional variables

Author information +
History +
PDF (173KB)

Abstract

The definition for weakly (K 1,K 2(x))-quasiregular mappings of several n-dimensional variables is given. A regularity property is obtained by using the stability result of Hodge decomposition, some analytical tools of Sobolev spaces, and differential geometry, which can be regarded as a generalization of the results due to T. Iwaniec and Hongya Gao.

Keywords

Weakly (K 1,K 2(x))-quasiregular mapping of several n-dimensional variables / weak reverse Hölder inequality / regularity

Cite this article

Download citation ▾
Hongya Gao, Qiuhua Huang, Fang Qian. Regularity for weakly (K 1, K 2(x))-quasiregular mappings of several n-dimensional variables. Front. Math. China, 2010, 6(2): 241-251 DOI:10.1007/s11464-011-0093-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dairbekov N. S. The concept of a quasiregular mapping of several n-dimensional variables. Dokl. RAN, 1992, 423 3 511-514

[2]

Dairbekov N. S. Quasiregular mappings of several n-dimensional variables. Siberian Mathematical Journal, 1993, 34 4 87-102

[3]

Dairbekov N. S. Stability of classes of quasiregular mappings in several spatial variables. Siberian Mathematical Journal, 1995, 36 1 43-54

[4]

Donalson S. K., Sullivan D. P. Qasiconformal conformal 4-manifolds. Acta Math, 1989, 163, 181-252

[5]

Gao Hongya. Regularity for weakly (K 1,K 2)-quasiregular mappings. Sci in China, Ser A, 2003, 46 4 499-505

[6]

Gao H., Li Tong. On degenerate weakly (K 1,K 2)-quasiregular mappings. Acta Math Sci, 2008, 28B 1 163-170

[7]

Gao H., Liu H., Zhou Shuqing. Higher integrability for weakly (K 1,K 2(x))-quasiregular mappings. Acta Math Sin, 2009, 52 5 847-852

[8]

Gao H., Zhou S., Meng Yuqin. A new inequality for weakly (K 1,K 2)-quasiregular mappings. Acta Math Sin (Eng Ser), 2007, 23 12 2241-2246

[9]

Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Ann of Math Stud, 1983, Princeton: Princeton Univ Press 105

[10]

Iwaniec T. p-harmonic tensors and quasiregular mappings. Ann of Math, 1992, 136 3 589-624

[11]

Iwaniec T., Martin G. Quasiregular mappings in even dimensions. Acta Math, 1993, 170, 29-81

[12]

Iwaniec T., Martin G. Geometric Function and Non-linear Analysis, 2001, Oxford: Clarendon Press.

[13]

Iwaniec T., Sbordone C. On the integrability of the Jacobian under minimal hypotheses. Arch Rational Mech Anal, 1992, 119, 129-143

[14]

Martio O., Rickman S., Väisälä J. Definitions for quasiregular mappings. Ann Acad Sci Fenn, Ser AI, 1969, 448, 1-40

[15]

Martio O., Rickman S., Väisälä J. Distortions and singularities of quasiregular mappings. Ann Acad Sci Fenn, Ser AI, 1970, 465, 1-13

[16]

Martio O., Rickman S., Väisälä J. Topological and metric properties of quasiregular mappings. Ann Acad Sci Fenn, Ser AI, 1971, 488, 1-31

[17]

Reshetnyak Y. G. Space Mappings with Bounded Distortion. Trans Math Monographs, 1989, Providence: Amer Math Soc.

AI Summary AI Mindmap
PDF (173KB)

782

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/