Quantum superdeterminants for OSP
Junli LIU, Shilin YANG
Quantum superdeterminants for OSP
It is shown that there exists a quantum superdeterminant sdetqT for the quantum super group OSPq(1|2n). It is also shown that the quantum superdeterminant sdetqT is a group-like element and central, and that the square of sdetqT for OSPq(1|2n) is equal to 1.
quantum superdeterminant / group-like element / quantum super group
[1] |
Bergman G M. The diamond lemma for ring theory. Adv Math, 1978, 29: 178-218
CrossRef
Google scholar
|
[2] |
Fiore G. Quantum groups SOq(N), Spq(n) have q-determinants, too. J Phys A Math Gen, 1994, 27: 3795-3802
CrossRef
Google scholar
|
[3] |
Hai P H. On the structure of quantum super groups GLq(m|n). J Algebra, 1999, 211: 363-383
CrossRef
Google scholar
|
[4] |
Hayashi T. Quantum groups and quantum determinants. J Algebra, 1992, 152: 146-165
CrossRef
Google scholar
|
[5] |
Liu J L, Yang S L. Orthosymplectic quantum function superalgebras OSPq(2l+1|2n). Acta Math Sin (Eng Ser) (to appear)
|
[6] |
Lyubashenko V V, Sudbery A. Quantum super groups of GL(n|m) type: differential forms, Koszul complexes and Berezinians. Duke Math J, 1997, 90: 1-62
CrossRef
Google scholar
|
[7] |
Manin Yu I. Multiparametric quantum deformation of the general linear supergroups. Comm Math Phys, 1989, 123: 163-175
CrossRef
Google scholar
|
[8] |
Parshall B, Wang J. Quantum Linear Groups. Mem Amer Math Soc, No 439.Providence: Amer Math Soc, 1991
|
[9] |
Takeuchi M. Matric bialgebras and quantum groups. Israel J Math, 1990, 72: 232-251
CrossRef
Google scholar
|
/
〈 | 〉 |