Quantum superdeterminants for OSP q(1-2n)

Junli Liu , Shilin Yang

Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 115 -127.

PDF (208KB)
Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 115 -127. DOI: 10.1007/s11464-010-0087-4
Research Article
RESEARCH ARTICLE

Quantum superdeterminants for OSP q(1-2n)

Author information +
History +
PDF (208KB)

Abstract

It is shown that there exists a quantum superdeterminant sdet q T for the quantum super group OSP q(1|2n). It is also shown that the quantum superdeterminant sdet q T is a group-like element and central, and that the square of sdet q T for OSP q(1|2n) is equal to 1.

Keywords

quantum superdeterminant / group-like element / quantum super group

Cite this article

Download citation ▾
Junli Liu, Shilin Yang. Quantum superdeterminants for OSP q(1-2n). Front. Math. China, 2010, 6(1): 115-127 DOI:10.1007/s11464-010-0087-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bergman G. M. The diamond lemma for ring theory. Adv Math, 1978, 29, 178-218

[2]

Fiore G. Quantum groups SOq(N), Spq(n) have q-determinants, too. J Phys A Math Gen, 1994, 27, 3795-3802

[3]

Hai P. H. On the structure of quantum super groups GLq(m|n). J Algebra, 1999, 211, 363-383

[4]

Hayashi T. Quantum groups and quantum determinants. J Algebra, 1992, 152, 146-165

[5]

Liu J L, Yang S L. Orthosymplectic quantum function superalgebras OSPq(2l +1|2n). Acta Math Sin (Eng Ser) (to appear)

[6]

Lyubashenko V. V., Sudbery A. Quantum super groups of GL(n|m) type: differential forms, Koszul complexes and Berezinians. Duke Math J, 1997, 90, 1-62

[7]

Manin Y. I. Multiparametric quantum deformation of the general linear supergroups. Comm Math Phys, 1989, 123, 163-175

[8]

Parshall B., Wang J. Quantum Linear Groups. Mem Amer Math Soc, 1991, Providence: Amer Math Soc.

[9]

Takeuchi M. Matric bialgebras and quantum groups. Israel J Math, 1990, 72, 232-251

AI Summary AI Mindmap
PDF (208KB)

837

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/