PDF
(236KB)
Abstract
Let G be a nonabelian group. We define the noncommuting graph ∇(G) of G as follows: its vertex set is G\Z(G), the set of non-central elements of G, and two different vertices x and y are joined by an edge if and only if x and y do not commute as elements of G, i.e., [x, y] ≠ 1. We prove that if L ∈ {L 4(7), L 4(11), L 4(13), L 4(16), L 4(17)} and G is a finite group such that ∇(G) ≅ ∇(L), then G ≅ L.
Keywords
noncommuting graph
/
spectrum
/
prime graph
/
projective special linear group L 4(q)
/
recognition by noncommuting graph
Cite this article
Download citation ▾
M. Akbari, M. Kheirabadi, A. R. Moghaddamfar.
Recognition by noncommuting graph of finite simple groups L 4(q).
Front. Math. China, 2010, 6(1): 1-16 DOI:10.1007/s11464-010-0085-6
| [1] |
Abdollahi A. Characterization of SL(2, q) by its non-commuting graph. Beiträge Algebra Geom, 2009, 50 2 443-448
|
| [2] |
Abdollahi A., Akbari S., Maimani H. R. Non-commuting graph of a group. J Algebra, 2006, 298 2 468-492
|
| [3] |
Bondy J. A., Murty U. S. R. Graph Theory, 2008, Berlin: Springer-Verlag
|
| [4] |
Buturlakin A. A. Spectra of finite linear and unitary groups. Algebra and Logic, 2008, 47 2 91-99
|
| [5] |
Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of Finite Groups, 1985, Oxford: Clarendon Press.
|
| [6] |
Gruenberg K. W. Free abelianised extensions of finite groups. Homological Group Theory (Proc Sympos, Durham, 1977). London Math Soc Lecture Note Ser, 36, 1979, Cambridge-New York: Cambridge Univ Press 71-104
|
| [7] |
Iiyori N., Yamaki H. Prime graph components of the simple groups of Lie type over the field of even characteristic. Proc Japan Acad Ser A, Math Sci, 1991, 67 3 82-83
|
| [8] |
Iiyori N., Yamaki H. Prime graph components of the simple groups of Lie type over the field of even characteristic. J Algebra, 1993, 1552, 335-343
|
| [9] |
Khosravi B, Khatami M. A new characterization of PGL(2, p) by its noncommuting graph. Bulletin of the Malaysian Mathematical Sciences Society (to appear)
|
| [10] |
Kondratév A. S. Prime graph components of finite simple groups. Math Sb, 1989, 180 6 787-797
|
| [11] |
Lambert P. J. A characterization of PSL(4, q), q even, q > 4. Illinois J Math, 1977, 21 2 255-265
|
| [12] |
Moghaddamfar A. R. About noncommuting graphs. Sib Math J, 2006, 47 5 911-914
|
| [13] |
Moghaddamfar A R, Rahbariyan S. More on the OD-characterizability of a finite group. Algebra Colloquium (to appear)
|
| [14] |
Moghaddamfar A. R., Shi W. J., Zhou W., Zokayi A. R. On the noncommuting graph associated with a finite group. Siberian Math J, 2005, 46 2 325-332
|
| [15] |
Neumann B. H. A problem of Paul Erdös on groups. J Austral Math Soc, Ser A, 1976, 21 4 467-472
|
| [16] |
Roitman M. On Zsigmondy primes. Proc Amer Math Soc, 1997, 125 7 1913-1919
|
| [17] |
Segev Y. On finite homomorphic images of the multiplicative group of a division algebra. Ann of Math, 1999, 149, 219-251
|
| [18] |
Segev Y., Seitz G. M. Anisotropic groups of type An and the commuting graph of finite simple groups. Pacific J Math, 2002, 202 1 125-225
|
| [19] |
Stellmacher B. Einfache Gruppen, die von einer Konjugiertenklasse vno Elementen der Ordnung drei erzeugt werden. J Algebra, 1974, 30, 320-354
|
| [20] |
Wang L. L., ShiW J. A new characterization of L2(q) by its noncommuting graph. Front Math China, 2007, 2 1 143-148
|
| [21] |
Wang L. L., Shi W. J. A new characterization of A10 by its noncommuting graph. Comm Algebra, 2008, 36 2 523-528
|
| [22] |
Wang L. L., Zhang L. C., Shao C. G. A new characterization of L 3(q) by its non-commuting graph. Journal of Suzhou University (Natural Science Edition), 2007, 23 2 1-5
|
| [23] |
Williams J. S. The prime graph components of finite groups. The Santa Cruz Conference on Finite Groups (Univ California, Santa Cruz, Calif, 1979). Proc Sympos Pure Math, 37, 1980, Providence: Amer Math Soc 195-196
|
| [24] |
Williams J. S. Prime graph components of finite groups. J Algebra, 1981, 69 2 487-513
|
| [25] |
Zavarnitsin A. V. Recognition of alternating groups of degrees r+1 and r+2 for prime r and the group of degree 16 by their element order sets. Algebra and Logic, 2000, 39 6 370-377
|
| [26] |
Zavarnitsin A. V. Exceptional action of the simple groups L 4(q) in the defining characteristic. Siberian Electronic Mathematical Reports, 2008, 5, 68-74
|
| [27] |
Zavarnitsine A. V. Finite simple groups with narrow prime spectrum. Siberian Electronic Mathematical Reports, 2009, 6, 1-12
|
| [28] |
Zhang L. C., Shi W. J. A new characterization of U 4(7) by its noncommuting graph. J Algebra Appl, 2009, 8 1 105-114
|
| [29] |
Zhang L. C., Shi W. J. Noncommuting graph characterization of some simple groups with connected prime graphs. Int Electron J Algebra, 2009, 5, 169-181
|
| [30] |
Zhang L. C., Shi W. J. New characterization of S 4(q) by its noncommuting graph. Siberian Math J, 2009, 50 3 533-540
|
| [31] |
Zhang L. C., Shi W. J. Recognition of some simple groups by their noncommuting graphs. Monatshefte Für Mathematik, 2010, 160 2 211-221
|
| [32] |
Zhang L C, Shi W J. Recognition of the projective general linear group PGL(2, q) by its noncommuting graph. Journal of Algebra and Its Applications (to appear)
|
| [33] |
Zhang L. C., Shi W. J., Liu X. F. A characterization of L 4(4) by its noncommuting graph. Chinese Ann Math, Ser A, 2009, 30 4 517-524
|
| [34] |
Zhang L C, Shi W J, Wang L L. On Thompson’s conjecture and AAM’s conjecture. Journal of Mathematics (China) (to appear)
|
| [35] |
Zhang L. C., Shi W. J., Wang L. L., Shao C. G. A new characterization of the simple group of Lie type U 3(q) by its non-commuting graph. Journal of Southwest University (Natural Science Edition), 2007, 298, 8-12
|