Pathwise uniqueness of multi-dimensional stochastic differential equations with Hölder diffusion coefficients

Dejun Luo

Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 129-136.

PDF(162 KB)
PDF(162 KB)
Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 129-136. DOI: 10.1007/s11464-010-0083-8
Research Article
RESEARCH ARTICLE

Pathwise uniqueness of multi-dimensional stochastic differential equations with Hölder diffusion coefficients

Author information +
History +

Abstract

We extend Yamada-Watababe’s criterion [J. Math. Kyoto Univ., 1971, 11: 553–563] on the pathwise uniqueness of one-dimensional stochastic differential equations to a special class of multi-dimensional stochastic differential equations.

Keywords

Stochastic differential equation (SDE) / strong solution / pathwise uniqueness / Hölder continuity

Cite this article

Download citation ▾
Dejun Luo. Pathwise uniqueness of multi-dimensional stochastic differential equations with Hölder diffusion coefficients. Front. Math. China, 2010, 6(1): 129‒136 https://doi.org/10.1007/s11464-010-0083-8

References

[1.]
Dawson D. A., Fleischmann K., Xiong J. Strong uniqueness for cyclically symbiotic branching diffusions. Statist Probab Lett, 2005, 73, 251-257
CrossRef Google scholar
[2.]
Fang S. Canonical Brownian motion on the diffeomorphism group of the circle. J Funct Anal, 2002, 196, 162-179
CrossRef Google scholar
[3.]
Fang S., Imkeller P., Zhang T. Global flows for stochastic differential equations without global Lipschitz conditions. Ann of Probab, 2007, 35, 180-205
CrossRef Google scholar
[4.]
Fang S., Luo D. Flow of homeomorphisms and stochastic transport equations. Stoch Anal Appl, 2007, 25, 1079-1108
CrossRef Google scholar
[5.]
Fang S., Luo D., Thalmaier A. Stochastic differential equations with coefficients in Sobolev spaces. J Funct Anal, 2010, 259, 1129-1168
CrossRef Google scholar
[6.]
Fang S., Zhang T. A study of a class of differential equations with non-Lipschitzian coefficients. Probab Theory Relat Fields, 2005, 132, 356-390
CrossRef Google scholar
[7.]
Fang S., Zhang T. Isotropic stochastic flow of homeomorphisms on Sd for the critical Sobolev exponent. J Math Pures et Appl, 2006, 85, 580-597
[8.]
He H. Strong uniqueness for a class of singular SDEs for catalytic branching diffusions. Statist Probab Lett, 2009, 79, 182-187
CrossRef Google scholar
[9.]
Ikeda N., Watanabe S. Stochastic Differential Equations and Diffusion Processes, 1989, 2nd ed., Amsterdam: North-Holland.
[10.]
Krylov N. V., Röckner M. Strong solutions of stochastic equations with singular time dependent drift. Prob Theory Relat Fields, 2005, 131, 154-196
CrossRef Google scholar
[11.]
Kunita H. Stochastic Flows and Stochastic Differential Equations, 1990, Cambridge: Cambridge University Press.
[12.]
Luo D. Regularity of solutions to differential equations with non-Lipschitz coefficients. Bull Sci Math, 2008, 132, 257-271
CrossRef Google scholar
[13.]
Malliavin P. The canonical diffusion above the diffeomorphism group of the circle. C R Acad Sci, 1999, 329, 325-329
[14.]
Suresh Kumar K. A class of degenerate stochastic differential equations with non-Lipschitz coefficients. http://arxiv.org/abs/0904.2629
[15.]
Yamada T., Watanabe S. On the uniqueness of stochastic differential equations. J Math Kyoto Univ, 1971, 11, 553-563
[16.]
Zhang X. Homeomorphic flows for multi-dimensional SDEs with non-Lipschitz coefficients. Stochastic Process Appl, 2005, 115, 435-448
CrossRef Google scholar
[17.]
Zhang X. Strong solutions of SDEs with singular drift and Sobolev diffusion coefficients. Stochastic Process Appl, 2005, 115, 1805-1818
CrossRef Google scholar
[18.]
Zhang X. Stochastic flows of SDEs with irregular coefficients and stochastic transport equations. Bull Sci Math, 2010, 134, 340-378
CrossRef Google scholar
AI Summary AI Mindmap
PDF(162 KB)

Accesses

Citations

Detail

Sections
Recommended

/