Pathwise uniqueness of multi-dimensional stochastic differential equations with Hölder diffusion coefficients

Dejun Luo

Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 129 -136.

PDF (162KB)
Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 129 -136. DOI: 10.1007/s11464-010-0083-8
Research Article
RESEARCH ARTICLE

Pathwise uniqueness of multi-dimensional stochastic differential equations with Hölder diffusion coefficients

Author information +
History +
PDF (162KB)

Abstract

We extend Yamada-Watababe’s criterion [J. Math. Kyoto Univ., 1971, 11: 553–563] on the pathwise uniqueness of one-dimensional stochastic differential equations to a special class of multi-dimensional stochastic differential equations.

Keywords

Stochastic differential equation (SDE) / strong solution / pathwise uniqueness / Hölder continuity

Cite this article

Download citation ▾
Dejun Luo. Pathwise uniqueness of multi-dimensional stochastic differential equations with Hölder diffusion coefficients. Front. Math. China, 2010, 6(1): 129-136 DOI:10.1007/s11464-010-0083-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dawson D. A., Fleischmann K., Xiong J. Strong uniqueness for cyclically symbiotic branching diffusions. Statist Probab Lett, 2005, 73, 251-257

[2]

Fang S. Canonical Brownian motion on the diffeomorphism group of the circle. J Funct Anal, 2002, 196, 162-179

[3]

Fang S., Imkeller P., Zhang T. Global flows for stochastic differential equations without global Lipschitz conditions. Ann of Probab, 2007, 35, 180-205

[4]

Fang S., Luo D. Flow of homeomorphisms and stochastic transport equations. Stoch Anal Appl, 2007, 25, 1079-1108

[5]

Fang S., Luo D., Thalmaier A. Stochastic differential equations with coefficients in Sobolev spaces. J Funct Anal, 2010, 259, 1129-1168

[6]

Fang S., Zhang T. A study of a class of differential equations with non-Lipschitzian coefficients. Probab Theory Relat Fields, 2005, 132, 356-390

[7]

Fang S., Zhang T. Isotropic stochastic flow of homeomorphisms on Sd for the critical Sobolev exponent. J Math Pures et Appl, 2006, 85, 580-597

[8]

He H. Strong uniqueness for a class of singular SDEs for catalytic branching diffusions. Statist Probab Lett, 2009, 79, 182-187

[9]

Ikeda N., Watanabe S. Stochastic Differential Equations and Diffusion Processes, 1989, 2nd ed., Amsterdam: North-Holland.

[10]

Krylov N. V., Röckner M. Strong solutions of stochastic equations with singular time dependent drift. Prob Theory Relat Fields, 2005, 131, 154-196

[11]

Kunita H. Stochastic Flows and Stochastic Differential Equations, 1990, Cambridge: Cambridge University Press.

[12]

Luo D. Regularity of solutions to differential equations with non-Lipschitz coefficients. Bull Sci Math, 2008, 132, 257-271

[13]

Malliavin P. The canonical diffusion above the diffeomorphism group of the circle. C R Acad Sci, 1999, 329, 325-329

[14]

Suresh Kumar K. A class of degenerate stochastic differential equations with non-Lipschitz coefficients. http://arxiv.org/abs/0904.2629

[15]

Yamada T., Watanabe S. On the uniqueness of stochastic differential equations. J Math Kyoto Univ, 1971, 11, 553-563

[16]

Zhang X. Homeomorphic flows for multi-dimensional SDEs with non-Lipschitz coefficients. Stochastic Process Appl, 2005, 115, 435-448

[17]

Zhang X. Strong solutions of SDEs with singular drift and Sobolev diffusion coefficients. Stochastic Process Appl, 2005, 115, 1805-1818

[18]

Zhang X. Stochastic flows of SDEs with irregular coefficients and stochastic transport equations. Bull Sci Math, 2010, 134, 340-378

AI Summary AI Mindmap
PDF (162KB)

905

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/