Windowed-Kontorovich-Lebedev transforms

Jiman Zhao , Lizhong Peng

Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 777 -792.

PDF (200KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 777 -792. DOI: 10.1007/s11464-010-0082-9
Research Article
RESEARCH ARTICLE

Windowed-Kontorovich-Lebedev transforms

Author information +
History +
PDF (200KB)

Abstract

The aim of this paper is to study the boundedness of the windowed-Kontorovich-Lebedev transforms. For this purpose, we first define the translation associated to the Kontorovich-Lebedev transform and a generalized convolution product, then obtain some harmonic analysis results. We present a sufficient and necessary condition for the boundedness of the windowed-Kontorovich-Lebedev transform. Finally, we define the corresponding Weyl operator, and study the boundedness and compactedness of the Weyl operator with symbols in Lq (q ∈ [1, 2]) acting on Lp.

Keywords

Kontorovich-Lebedev transform / translation / Weyl operator / Windowed-Kontorovich-Lebedev transform

Cite this article

Download citation ▾
Jiman Zhao, Lizhong Peng. Windowed-Kontorovich-Lebedev transforms. Front. Math. China, 2010, 5(4): 777-792 DOI:10.1007/s11464-010-0082-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bennett C., Sharpley R. Interpolation of Operators, 1988, New York: Academic Press.

[2]

Bloom W. R., Heyer H. Harmonic Analysis of Probability Measures on Hypergroups. de Gruyter Studies in Mathematics, 1995, Berlin: Walter de Gruyter Co.

[3]

Boggiatto P., Buzano E., Rodino L. Global Hypoellipticity and Spectral Theory, 1996, Berlin: Akademie-Verlag.

[4]

Boggiatto P., De Donno G., Oliaro A. Weyl quantization of Lebesgue spaces. Math Nachr, 2009, 282(12): 1656-1663.

[5]

Boggiatto P., Rodino L. Quantization and pseudo-differential operators. Cubo Mat Educ, 2003, 5(1): 237-272.

[6]

Bouattour L., Trimeche K. Beurling-Hörmander’s theorem for the Chébli-Trimèche transform. Glob J Pure Appl Math, 2005, 1(3): 342-357.

[7]

Dachraoui A. Weyl-Bessel transforms. J Comput Appl Math, 2001, 133(1–2): 263-276.

[8]

Gröchenig K. H. Foundations of Time-Frequency Analysis, 2001, Boston: Birkhäuser.

[9]

Lebedev N. N. Special Functions and Their Applications, 1953, Moscow: Gosudarstv Izdat Tehn -Teor Lit.

[10]

Oberhettinger F. Tables of Bessel Transforms, 1972, New York: Springer.

[11]

Peng L. Z., Zhao J. M. Weyl transforms on the upper half plane. Rev Mat Complut, 2010, 23: 77-95.

[12]

Rachdi L. T., Trimèche K. Weyl transforms associated with the spherical mean operator. Anal Appl (Singap), 2003, 1(2): 141-164.

[13]

Stein E. M. Harmonic Analysis. Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton: Princeton Univ Press.

[14]

Terras A. Harmonic Analysis on Symmetric Space and Application, I, 1985, New York: Springer-Verlag.

[15]

Toft J. Continuity properties for modulation spaces with applications to pseudodifferential calculus, I. J Funct Anal, 2004, 207(2): 399-429.

[16]

Toft J. Continuity properties for modulation spaces with applications to pseudodifferential calculus, II. Ann Global Anal Geom, 2004, 26(1): 73-106.

[17]

Watson G. N. A Treatise on the Theory of Bessel Functions, 1966 2nd ed. London: Cambridge Univ Press.

[18]

Wong M. W. Weyl Transform, 1998, New York: Springer-Verlag.

[19]

Zhao J. M., Peng L. Z. Wavelet and Weyl transform associated with the spherical mean operator. Integral Equation and Operator Theory, 2004, 50: 279-290.

AI Summary AI Mindmap
PDF (200KB)

1034

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/