A quadrangle comparison theorem and its application to soul theory for Alexandrov spaces

Jianguo Cao , Bo Dai , Jiaqiang Mei

Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 35 -48.

PDF (216KB)
Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 35 -48. DOI: 10.1007/s11464-010-0079-4
Research Article
RESEARCH ARTICLE

A quadrangle comparison theorem and its application to soul theory for Alexandrov spaces

Author information +
History +
PDF (216KB)

Abstract

We shall derive two sufficient conditions for complete finite-dimensional Alexandrov spaces of nonnegative curvature to be contractible. One of the new technical tools used in our proof is a quadrangle comparison theorem inspired by Perelman.

Keywords

Alexandrov space with nonnegative curvature / soul theory / quadrangle comparison theorem

Cite this article

Download citation ▾
Jianguo Cao, Bo Dai, Jiaqiang Mei. A quadrangle comparison theorem and its application to soul theory for Alexandrov spaces. Front. Math. China, 2010, 6(1): 35-48 DOI:10.1007/s11464-010-0079-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burago D., Burage Y., Ivanov S. A Course in Metric Geometry, 2001, Providence: Amer Math Soc.

[2]

Burago Y., Gromov M., Perelman G. A.D. Alexandrov spaces with curvature bounded below. Russian Mathematical Surveys, 1992, 47, 1-58

[3]

Cao J., Dai B., Mei J. Lee Y.-I., Lin C.-S., Tsui M.-P. An optimal extension of Perelman’s comparison theorem for quadrangles and its applications. Recent Advances in Geometric Analysis, 2009, Beijing and Boston: Higher Education Press and International Press 39-59

[4]

Cheeger J., Gromoll D. On the structure of complete manifolds of nonnegative curvature. Annals of Mathematics, 1972, 96, 413-443

[5]

Greene R. Grove K., Petersen P. A genealogy of noncompact manifolds of nonnegative curvature: history and logic. Comparison Geometry, 1997, New York: Cambridge University Press 99-134

[6]

Gromoll D., Meyer W. On complete open manifolds of positive curvature. Annals of Mathematics, 1969, 90, 75-90

[7]

Kapovitch V., Petrunin A., Tuschmann W. Nilpotency, almost nonnegative curvature and the gradient push. Annals of Mathematics, 2010, 171 1 343-373

[8]

Perelman G. lexandrov’s spaces with curvatures bounded from below II. 1991, http://www.math.psu.edu/petrunin/papers/papers.html

[9]

Perelman G. Proof of the soul conjecture of Cheeger and Gromoll. Journal of Differential Geometry, 1994, 40, 209-212

[10]

Perelman G. Spaces with curvature bounded below. Proceedings of the International Congress of Mathematicians, 1995, Basel: Birkhäuser Verlag 517-525

[11]

Perelman G., Petrunin A. Extremal subsets in Alexandrov spaces and the generalized Liebman theorem. St Petersburg Mathematical Journal, 1994, 5 1 215-227

[12]

Petrunin A. Cheeger J., Grove K. Semiconcave functions in Alexandrov’s geometry. Surveys in Differential Geometry, Volume XI, Metric and Comparison Geometry, 2007, Sommerville: International Press 137-201

[13]

Sharafutdinov V. The Pogorelov-Klingenberg theorem for manifolds that are homeomorphic to ℝn. Siberian Mathematical Journal, 1977, 18 4 649-657

AI Summary AI Mindmap
PDF (216KB)

830

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/