Notes on NE-subgroups of finite groups

Jiakuan Lu , Xiuyun Guo

Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 679 -685.

PDF (117KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 679 -685. DOI: 10.1007/s11464-010-0078-5
Research Article
RESEARCH ARTICLE

Notes on NE-subgroups of finite groups

Author information +
History +
PDF (117KB)

Abstract

In this paper, we first analyze the structure of a finite nonsolvable group in which every cyclic subgroup of order 2 and 4 of every second maximal subgroup is an NE-subgroup. Next, we prove that a finite group G is solvable if every nonnilpotent subgroup of G is a PE-group.

Keywords

NE-subgroup / solvable group / p-nilpotent group

Cite this article

Download citation ▾
Jiakuan Lu, Xiuyun Guo. Notes on NE-subgroups of finite groups. Front. Math. China, 2010, 5(4): 679-685 DOI:10.1007/s11464-010-0078-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Buckley J. Finite groups whose minimal subgroups are normal. Math Z, 1970, 116: 15-17.

[2]

Gorenstein D. Finite Groups, 1968, New York-London: Harper & Row.

[3]

Gorenstein D. Finite Simple Groups: An Introduction to Their Classification, 1982, New York: Plenum Publishing Corp.

[4]

Huppert B. Endliche Gruppen I, 1967, New York, Berlin: Springer-Verlag.

[5]

Li S. On minimal subgroups of finite groups. Comm Algebra, 1994, 22: 1913-1918.

[6]

Li S. On minimal non-PE-groups. J Pure and Applied Algebra, 1998, 132: 149-158.

[7]

Li S., Zhao Y. Some finite nonsolvable groups characterized by their solvable subgroups. Acta Mathematica Sinica (New Ser), 1988, 4: 5-13.

[8]

Li Y. Finite groups with NE-subgroups. J Group Theory, 2006, 9: 49-58.

[9]

Sastry N. On minimal non-PN-groups. J Algebra, 1980, 65: 104-109.

[10]

Szasz F. On cyclic groups. Fund Math, 1956, 43: 238-240.

AI Summary AI Mindmap
PDF (117KB)

732

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/