Semi cover-avoiding properties of finite groups

Tao ZHAO, Xianhua LI

PDF(133 KB)
PDF(133 KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 793-800. DOI: 10.1007/s11464-010-0075-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Semi cover-avoiding properties of finite groups

Author information +
History +

Abstract

In this paper, we characterize the nilpotency and supersolvability of a finite group G by assuming some subgroups of prime power order have the semi cover-avoiding property in G. Some earlier results are generalized.

Keywords

Semi cover-avoiding property / supersolvable group / nilpotent group / formation

Cite this article

Download citation ▾
Tao ZHAO, Xianhua LI. Semi cover-avoiding properties of finite groups. Front Math Chin, 2010, 5(4): 793‒800 https://doi.org/10.1007/s11464-010-0075-8

References

[1]
Ballester-Bolinches A. ℋ-normalizers and local definitions of saturated formations of finite groups. Israel J Math, 1989, 67(3): 312-326
CrossRef Google scholar
[2]
Ballester-Bolinches A, Pedraza Aguilera MC. On minimal subgroups of finite groups. Acta Math Hungar, 1996, 73(4): 335-342
CrossRef Google scholar
[3]
Doerk K, Hawkes T. Finite Soluble Groups. Berlin: Walter de Gruyter, 1992
[4]
Fan Yun, Guo Xiuyun, Shum K P. Remarks on two generalizations of normality of Subgroups. Chinese Annals of Math (Chinese Series), 2006, 27A(2): 169-176
[5]
Gaschütz W. Praefrattini gruppen. Arch Math, 1962, 13: 418-426
CrossRef Google scholar
[6]
Guo Xiuyun, Guo Pengfei, Shum K P. On semi cover-avoiding subgroups of finite groups. J Pure and Appl Algebra, 2007, 209: 151-158
CrossRef Google scholar
[7]
Guo Xiuyun, Shum K P. Cover-avoidance properties and the structure of finite groups. J Pure and Appl Algebra, 2003, 181: 297-308
CrossRef Google scholar
[8]
Guo Xiuyun, Wang Lili. On finite groups with some semi cover-avoiding subgroups. Acta Math Sinica (English Series), 2007, 23: 1689-1696
CrossRef Google scholar
[9]
Huppert B. Endliche Gruppen I. New York: Springer, 1967
[10]
Li Yangming, Wang Yanming, Wei Huaquan. On p-nilpotency of finite groups with some subgroups π-quasinormally embedded. Acta Math Hungar, 2005, 108(4): 283-298
CrossRef Google scholar
[11]
Robinson D J S. A Course in the Theory of Groups. 2nd ed. New York: Springer, 1996
[12]
Yang Yuanwei, Li Xianhua. Semi CAP-subgroups and the properties of finite groups. Journal of Suzhou University (Natural Science Edition), 2008, 24(2): 1-6

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(133 KB)

Accesses

Citations

Detail

Sections
Recommended

/