Semi cover-avoiding properties of finite groups

Tao Zhao , Xianhua Li

Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 793 -800.

PDF (133KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 793 -800. DOI: 10.1007/s11464-010-0075-8
Research Article
RESEARCH ARTICLE

Semi cover-avoiding properties of finite groups

Author information +
History +
PDF (133KB)

Abstract

In this paper, we characterize the nilpotency and supersolvability of a finite group G by assuming some subgroups of prime power order have the semi cover-avoiding property in G. Some earlier results are generalized.

Keywords

Semi cover-avoiding property / supersolvable group / nilpotent group / formation

Cite this article

Download citation ▾
Tao Zhao, Xianhua Li. Semi cover-avoiding properties of finite groups. Front. Math. China, 2010, 5(4): 793-800 DOI:10.1007/s11464-010-0075-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ballester-Bolinches A. ℋ-normalizers and local definitions of saturated formations of finite groups. Israel J Math, 1989, 67(3): 312-326.

[2]

Ballester-Bolinches A., Pedraza Aguilera M. C. On minimal subgroups of finite groups. Acta Math Hungar, 1996, 73(4): 335-342.

[3]

Doerk K., Hawkes T. Finite Soluble Groups, 1992, Berlin: Walter de Gruyter.

[4]

Fan Y., Guo X., Shum K. P. Remarks on two generalizations of normality of Subgroups. Chinese Annals of Math (Chinese Series), 2006, 27A(2): 169-176.

[5]

Gaschütz W. Praefrattini gruppen. Arch Math, 1962, 13: 418-426.

[6]

Guo X., Guo P., Shum K. P. On semi cover-avoiding subgroups of finite groups. J Pure and Appl Algebra, 2007, 209: 151-158.

[7]

Guo X., Shum K. P. Cover-avoidance properties and the structure of finite groups. J Pure and Appl Algebra, 2003, 181: 297-308.

[8]

Guo X., Wang L. On finite groups with some semi cover-avoiding subgroups. Acta Math Sinica (English Series), 2007, 23: 1689-1696.

[9]

Huppert B. Endliche Gruppen I, 1967, New York: Springer.

[10]

Li Y., Wang Y., Wei H. On p-nilpotency of finite groups with some subgroups π-quasinormally embedded. Acta Math Hungar, 2005, 108(4): 283-298.

[11]

Robinson D. J. S. A Course in the Theory of Groups, 1996 2nd ed. New York: Springer.

[12]

Yang Y., Li X. Semi CAP-subgroups and the properties of finite groups. Journal of Suzhou University (Natural Science Edition), 2008, 24(2): 1-6.

AI Summary AI Mindmap
PDF (133KB)

785

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/