PDF
(236KB)
Abstract
A class of piecewise linear paths, as a generalization of Littelmann’s paths, are introduced, and some operators, acting on the above paths with fixed parametrization, are defined. These operators induce the ordinary Littelmann’s root operators’ action on the equi-alence classes of paths. With these induced operators, an explicit realization of B(∞) is given in terms of equivalence classes of paths, where B(∞) is the crystal base of the negative part of a quantum group U q(g). Furthermore, we conjecture that there is a complete set of representatives for the above model by fixing a parametrization, and we prove the case when g is of finite type.
Keywords
Path
/
crystal
/
root operator
Cite this article
Download citation ▾
Bin Li, Hechun Zhang.
Path realization of crystal B(∞).
Front. Math. China, 2010, 6(4): 689-706 DOI:10.1007/s11464-010-0073-x
| [1] |
Cliff G. Crystal bases and Young tableaux. J Algebra, 1998, 202 1 10-35
|
| [2] |
Hong J., Kang S. -J. Introduction to Quantum Groups and Crystal Bases. Graduate Studies in Mathematics, 2002, Providence: Amer Math Soc.
|
| [3] |
Hong J., Lee H. Young tableaux and crystal B(∞) for finite simple Lie algebras. J Algebra, 2008, 320, 3680-3693
|
| [4] |
Kang S. -J., Kashiwara M., Misra K., Miwa T., Nakashima T., Nakayashiki A. Affine Crystals and Vertex Models. Int J Mod Phys, 1992, A7 1A 449-484
|
| [5] |
Kang S. -J., Kashiwara M., Misra K., Miwa T., Nakashima T., Nakayashiki A. Perfect crystals of quantum affine Lie algebras. Duke Math J, 1992, 68, 499-607
|
| [6] |
Kashiwara M. Crystalizing the q-analogue of universal enveloping algebras. Comm Math Phys, 1990, 133, 249-260
|
| [7] |
Kashiwara M. On crystal bases of the q-analogue of universal enveloping algebras. Duke Math J, 1991, 63, 465-516
|
| [8] |
Kashiwara M. The crystal bases and Littelmann’s refined Demazure character formula. Duke Math J, 1993, 71 3 839-858
|
| [9] |
Kashiwara M. Realizations of crystals. Combinatorial and Geometric Representation Theory (Seoul, 2001), 2003, Providence: Amer Math Soc 133-139
|
| [10] |
Kashiwara M., Saito Y. Geometric construction of crystal bases. Duke Math J, 1997, 89 1 9-36
|
| [11] |
Littelmann P. A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. Invent Math, 1994, 116, 329-346
|
| [12] |
Littelmann P. Path and root operators in representation theory. Ann of Math, 1995, 142 3 499-525
|
| [13] |
Nakashima T., Zelevinsky A. Polyhedral realizations of crystal bases for quantized Kac-Moody algebras. Adv Math, 1997, 131 1 253-278
|
| [14] |
Savage A. Geometric and combinatorial realizations of crystal graphs. Alg Represent Theory, 2006, 9 2 161-199
|
| [15] |
Savage A. Geometric and combinatorial realizations of crystals of enveloping algebras. Lie Algebras, Vertex Operator Algebras and Their Applications (Raleigh, NC, 2005), 2007, Providence: Amer Math Soc 221-232
|