Path realization of crystal B()

Bin LI, Hechun ZHANG

PDF(236 KB)
PDF(236 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 689-706. DOI: 10.1007/s11464-010-0073-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Path realization of crystal B()

Author information +
History +

Abstract

A class of piecewise linear paths, as a generalization of Littelmann’s paths, are introduced, and some operators, acting on the above paths with fixed parametrization, are defined. These operators induce the ordinary Littelmann’s root operators’ action on the equivalence classes of paths. With these induced operators, an explicit realization of B() is given in terms of equivalence classes of paths, where B() is the crystal base of the negative part of a quantum group Uq(g). Furthermore, we conjecture that there is a complete set of representatives for the above model by fixing a parametrization, and we prove the case when g is of finite type.

Keywords

Path / crystal / root operator

Cite this article

Download citation ▾
Bin LI, Hechun ZHANG. Path realization of crystal B(). Front Math Chin, 2011, 6(4): 689‒706 https://doi.org/10.1007/s11464-010-0073-x

References

[1]
Cliff G. Crystal bases and Young tableaux. J Algebra, 1998, 202(1): 10-35
CrossRef Google scholar
[2]
Hong J, Kang S-J. Introduction to Quantum Groups and Crystal Bases. Graduate Studies in Mathematics, Vol 42. Providence: Amer Math Soc, 2002
[3]
Hong J, Lee H. Young tableaux and crystal B(∞) for finite simple Lie algebras. J Algebra, 2008, 320: 3680-3693
CrossRef Google scholar
[4]
Kang S-J, Kashiwara M, Misra K, Miwa T, Nakashima T, Nakayashiki A. Affine Crystals and Vertex Models. Int J Mod Phys, A7, 1992, Suppl.1A: 449-484
[5]
Kang S-J, Kashiwara M, Misra K, Miwa T, Nakashima T, Nakayashiki A. Perfect crystals of quantum affine Lie algebras. Duke Math J, 1992, 68: 499-607
CrossRef Google scholar
[6]
Kashiwara M. Crystalizing the q-analogue of universal enveloping algebras. Comm Math Phys, 1990, 133: 249-260
CrossRef Google scholar
[7]
Kashiwara M. On crystal bases of the q-analogue of universal enveloping algebras. Duke Math J, 1991, 63: 465-516
CrossRef Google scholar
[8]
Kashiwara M. The crystal bases and Littelmann’s refined Demazure character formula. Duke Math J, 1993, 71(3): 839-858
CrossRef Google scholar
[9]
Kashiwara M. Realizations of crystals. In: Combinatorial and Geometric Representation Theory (Seoul, 2001). Contemp Math, Vol 325. Providence: Amer Math Soc, 2003, 133-139
[10]
Kashiwara M, Saito Y. Geometric construction of crystal bases. Duke Math J, 1997, 89(1): 9-36
CrossRef Google scholar
[11]
Littelmann P. A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. Invent Math, 1994, 116: 329-346
CrossRef Google scholar
[12]
Littelmann P. Path and root operators in representation theory. Ann of Math, 1995, 142(3): 499-525
CrossRef Google scholar
[13]
Nakashima T, Zelevinsky A. Polyhedral realizations of crystal bases for quantized Kac-Moody algebras. Adv Math, 1997, 131(1): 253-278
CrossRef Google scholar
[14]
Savage A. Geometric and combinatorial realizations of crystal graphs. Alg Represent Theory, 2006, 9(2): 161-199
CrossRef Google scholar
[15]
Savage A. Geometric and combinatorial realizations of crystals of enveloping algebras. In: Lie Algebras, Vertex Operator Algebras and Their Applications (Raleigh, NC, 2005). Contemp Math, 442. Providence: Amer Math Soc, 2007, 221-232

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(236 KB)

Accesses

Citations

Detail

Sections
Recommended

/