Complex Lie algebras corresponding to weighted projective lines

Rujing DOU, Jie SHENG, Jie XIAO

PDF(186 KB)
PDF(186 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 629-639. DOI: 10.1007/s11464-010-0070-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Complex Lie algebras corresponding to weighted projective lines

Author information +
History +

Abstract

The aim of this paper is to give an alternative proof of Kac’s theorem for weighted projective lines over the complex field. The geometric realization of complex Lie algebras arising from derived categories is essentially used.

Keywords

Weighted projective line / coherent sheaf / loop algebra / Lie algebra

Cite this article

Download citation ▾
Rujing DOU, Jie SHENG, Jie XIAO. Complex Lie algebras corresponding to weighted projective lines. Front Math Chin, 2011, 6(4): 629‒639 https://doi.org/10.1007/s11464-010-0070-0

References

[1]
Crawley-Boevey W. Indecomposable parabolic bundles and the existence of matrices in prescribed conjugacy class closures with product equal to the identity. Publ Math Inst Hautes Etudes Sci, 2004, 100: 171-207
CrossRef Google scholar
[2]
Crawley-Boevey W. Kac’s Theorem for weighted projective lines. Journal of European Math Soc (to appear); arXiv:math.AG/0512078
[3]
Geigle W, Lenzing H. A class of weighed projective curves arising in the representation theory of finite-dimensional algebras. In: Singularities, Representations of Algebras and Vector Bundles (Lambrecht, Germany, 1985). Lecture Note in Math, 1273. Berlin: Springer, 1987, 265-297
CrossRef Google scholar
[4]
Kac V G. Root systems, representations of quivers and invariant theory. In: Gherardelli F, ed. Invariant Theory (Montecatini, 1982). Lecture Notes in Math, 996. Berlin: Springer, 1983, 74-108
[5]
Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math, 1099. Berlin-Heidelberg-New York: Springer, 1984
[6]
Xiao J, Xu F, Zhang G. Derived categories and Lie algebras. arxiv:math.QA/0604564v1

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(186 KB)

Accesses

Citations

Detail

Sections
Recommended

/