Spectrum of resolvable directed quadruple systems
Jian Wang , Beiliang Du
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 717 -726.
Spectrum of resolvable directed quadruple systems
A t-(v, k, 1) directed design (or simply a t-(v, k, 1)DD) is a pair (S, ℐ), where S is a v-set and ℐ is a collection of k-tuples (called blocks) of S, such that every t-tuple of S belongs to a unique block. The t-(v, k, 1)DD is called resolvable if ℐ can be partitioned into some parallel classes, so that each parallel class is a partition of S. It is proved that a resolvable 3-(v, 4, 1)DD exists if and only if v = 0 (mod 4).
n-tuple / directed design / resolvable directed quadruple system
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
/
| 〈 |
|
〉 |