Fast evaluation of exact transparent boundary condition for one-dimensional cubic nonlinear Schrödinger equation

Chunxiong Zheng

Front. Math. China ›› 2010, Vol. 5 ›› Issue (3) : 589-606.

PDF(3388 KB)
PDF(3388 KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (3) : 589-606. DOI: 10.1007/s11464-010-0058-9
Research Article
Research articles

Fast evaluation of exact transparent boundary condition for one-dimensional cubic nonlinear Schrödinger equation

Author information +
History +

Abstract

Fast evaluation of the exact transparent boundary condition for the one-dimensional cubic nonlinear Schrödinger equation is considered in this paper. In [J. Comput. Math., 2007, 25(6): 730–745], the author proposed a fast evaluation method for the half-order time derivative operator. In this paper, we apply this method for the exact transparent boundary condition for the one-dimensional cubic nonlinear Schrödinger equation. Numerical tests demonstrate the effectiveness of the proposed method.

Keywords

Schrödinger equation / transparent boundary condition / fast evaluation / unbounded domain

Cite this article

Download citation ▾
Chunxiong Zheng. Fast evaluation of exact transparent boundary condition for one-dimensional cubic nonlinear Schrödinger equation. Front. Math. China, 2010, 5(3): 589‒606 https://doi.org/10.1007/s11464-010-0058-9

References

[1.]
Antoine X., Arnold A., Besse C., Ehrhardt M., Schädle A. A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Comm Comput Sci, 2008, 4: 729-796.
[2.]
Antoine X., Besse C. Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation. J Comput Phys, 2003, 181(1): 157-175.
CrossRef Google scholar
[3.]
Antoine X., Besse C., Descombes S. Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations. SIAM J Numer Anal, 2006, 43(6): 2272-2293.
CrossRef Google scholar
[4.]
Arnold A. Numerically absorbing boundary conditions for quantum evolution equations. VLSI Design, 1998, 6: 313-319.
CrossRef Google scholar
[5.]
Arnold A., Ehrhardt M. Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics. J Comput Phys, 1998, 145: 611-638.
CrossRef Google scholar
[6.]
Arnold A., Ehrhardt M., Sofronov I. Approximation, stability and fast calculation of non-local boundary conditions for the Schrödinger equation. Commun Math Sci, 2003, 1(3): 501-556.
[7.]
Baskakov V. A., Popov A. V. Implementation of transparent boundaries for the numerical solution of the Schrödinger equation. Wave Motion, 1991, 14: 123-128.
CrossRef Google scholar
[8.]
Bell W. W. Special Functions for Scientists and Engineers, 1968, New York: D Van Nostrand Company, Ltd.
[9.]
Besse C. A relaxation scheme for the nonlinear Schrödinger equation. SIAM J Numer Anal, 2004, 42(3): 934-952.
CrossRef Google scholar
[10.]
Boutet de Monvel A., Fokas A. S., Shepelsky D. Analysis of the global relation for the nonlinear Schrödinger equation on the half-line. Lett Math Phys, 2003, 65: 199-212.
CrossRef Google scholar
[11.]
Davydov A. S. Solitons in Molecular Systems, 1985, Dordrecht: Reidel.
[12.]
Delfour M., Fortin M., Payre G. Finite-difference solutions of a nonlinear Schrödinger equation. J Comput Phys, 1981, 44: 277-288.
CrossRef Google scholar
[13.]
Durán A., Sanz-Serna J. M. The numerical integration of relative equilibrium solution. The nonlinear Schrödinger equation. IMA J Numer Anal, 2000, 20(2): 235-261.
CrossRef Google scholar
[14.]
Ehrhardt M., Arnold A. Discrete transparent boundary conditions for the Schrödinger equation. Riv Math Univ Parma, 2001, 6(4): 57-108.
[15.]
Gorenflo R., Mainardi F. Carpinteri A., Mainardi F. Fractional calculus: integral and differential equations of fractional order. Fractals and Fractional Calculus in Continuum Mechanics, 1997, Wien: Springer, 223-276.
[16.]
Han H., Huang Z. Y. Exact artificial boundary conditions for Schrödinger equation in ℝ2. Comm Math Sci, 2004, 2: 79-94.
[17.]
Han H., Yin D. S., Huang Z. Y. Numerical solutions of Schrödinger equations in ℝ3. Numer Meth Partial Diff Eqs, 2006, 23: 511-533.
CrossRef Google scholar
[18.]
Hasegawa A. Optical Solitons in Fibers, 1989, Berlin: Springer-Verlag.
[19.]
Jiang S., Greengard L. Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension. Comput Math Appl, 2004, 47: 955-966.
CrossRef Google scholar
[20.]
Mayfield B. Non Local Boundary Conditions for the Schrödinger Equation. Ph D Thesis, 1989, Providence: University of Rhodes Island.
[21.]
Papadakis J. S. Exact nonreflecting boundary conditions for parabolic-type approximations in underwater acoustics. J Comput Acoust, 1994, 2(2): 83-98.
CrossRef Google scholar
[22.]
Schmidt F., Deuflhard P. Discrete transparent boundary conditions for the numerical solution of Fresnel’s equation. Comput Math Appl, 1995, 29(9): 53-76.
CrossRef Google scholar
[23.]
Schmidt F., Yevick D. Discrete transparent boundary conditions for Schrödinger-type equations. J Comput Phys, 1997, 134: 96-107.
CrossRef Google scholar
[24.]
Sulem C., Sulem P. The Nonlinear Schrödinger Equation, 2000, Berlin: Springer.
[25.]
Sun Z. Z., Wu X. The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions. J Comput Phys, 2006, 214(1): 209-223.
CrossRef Google scholar
[26.]
Yevick D., Friese T., Schmidt F. A comparison of transparent boundary conditions for the Fresnel equation. J Comput Phys, 2001, 168: 433-444.
CrossRef Google scholar
[27.]
Zheng C. Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations. J Comput Phys, 2006, 215: 552-565.
CrossRef Google scholar
[28.]
Zheng C. Approximation, stability and fast evaluation of exact artificial boundary condition for the one-dimensional heat equation. J Comput Math, 2007, 25(6): 730-745.
AI Summary AI Mindmap
PDF(3388 KB)

Accesses

Citations

Detail

Sections
Recommended

/