Fast evaluation of exact transparent boundary condition for one-dimensional cubic nonlinear Schrödinger equation

Chunxiong Zheng

Front. Math. China ›› 2010, Vol. 5 ›› Issue (3) : 589 -606.

PDF (3388KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (3) : 589 -606. DOI: 10.1007/s11464-010-0058-9
Research Article
Research articles

Fast evaluation of exact transparent boundary condition for one-dimensional cubic nonlinear Schrödinger equation

Author information +
History +
PDF (3388KB)

Abstract

Fast evaluation of the exact transparent boundary condition for the one-dimensional cubic nonlinear Schrödinger equation is considered in this paper. In [J. Comput. Math., 2007, 25(6): 730–745], the author proposed a fast evaluation method for the half-order time derivative operator. In this paper, we apply this method for the exact transparent boundary condition for the one-dimensional cubic nonlinear Schrödinger equation. Numerical tests demonstrate the effectiveness of the proposed method.

Keywords

Schrödinger equation / transparent boundary condition / fast evaluation / unbounded domain

Cite this article

Download citation ▾
Chunxiong Zheng. Fast evaluation of exact transparent boundary condition for one-dimensional cubic nonlinear Schrödinger equation. Front. Math. China, 2010, 5(3): 589-606 DOI:10.1007/s11464-010-0058-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antoine X., Arnold A., Besse C., Ehrhardt M., Schädle A. A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Comm Comput Sci, 2008, 4: 729-796.

[2]

Antoine X., Besse C. Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation. J Comput Phys, 2003, 181(1): 157-175.

[3]

Antoine X., Besse C., Descombes S. Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations. SIAM J Numer Anal, 2006, 43(6): 2272-2293.

[4]

Arnold A. Numerically absorbing boundary conditions for quantum evolution equations. VLSI Design, 1998, 6: 313-319.

[5]

Arnold A., Ehrhardt M. Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics. J Comput Phys, 1998, 145: 611-638.

[6]

Arnold A., Ehrhardt M., Sofronov I. Approximation, stability and fast calculation of non-local boundary conditions for the Schrödinger equation. Commun Math Sci, 2003, 1(3): 501-556.

[7]

Baskakov V. A., Popov A. V. Implementation of transparent boundaries for the numerical solution of the Schrödinger equation. Wave Motion, 1991, 14: 123-128.

[8]

Bell W. W. Special Functions for Scientists and Engineers, 1968, New York: D Van Nostrand Company, Ltd.

[9]

Besse C. A relaxation scheme for the nonlinear Schrödinger equation. SIAM J Numer Anal, 2004, 42(3): 934-952.

[10]

Boutet de Monvel A., Fokas A. S., Shepelsky D. Analysis of the global relation for the nonlinear Schrödinger equation on the half-line. Lett Math Phys, 2003, 65: 199-212.

[11]

Davydov A. S. Solitons in Molecular Systems, 1985, Dordrecht: Reidel.

[12]

Delfour M., Fortin M., Payre G. Finite-difference solutions of a nonlinear Schrödinger equation. J Comput Phys, 1981, 44: 277-288.

[13]

Durán A., Sanz-Serna J. M. The numerical integration of relative equilibrium solution. The nonlinear Schrödinger equation. IMA J Numer Anal, 2000, 20(2): 235-261.

[14]

Ehrhardt M., Arnold A. Discrete transparent boundary conditions for the Schrödinger equation. Riv Math Univ Parma, 2001, 6(4): 57-108.

[15]

Gorenflo R., Mainardi F. Carpinteri A., Mainardi F. Fractional calculus: integral and differential equations of fractional order. Fractals and Fractional Calculus in Continuum Mechanics, 1997, Wien: Springer, 223-276.

[16]

Han H., Huang Z. Y. Exact artificial boundary conditions for Schrödinger equation in ℝ2. Comm Math Sci, 2004, 2: 79-94.

[17]

Han H., Yin D. S., Huang Z. Y. Numerical solutions of Schrödinger equations in ℝ3. Numer Meth Partial Diff Eqs, 2006, 23: 511-533.

[18]

Hasegawa A. Optical Solitons in Fibers, 1989, Berlin: Springer-Verlag.

[19]

Jiang S., Greengard L. Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension. Comput Math Appl, 2004, 47: 955-966.

[20]

Mayfield B. Non Local Boundary Conditions for the Schrödinger Equation. Ph D Thesis, 1989, Providence: University of Rhodes Island.

[21]

Papadakis J. S. Exact nonreflecting boundary conditions for parabolic-type approximations in underwater acoustics. J Comput Acoust, 1994, 2(2): 83-98.

[22]

Schmidt F., Deuflhard P. Discrete transparent boundary conditions for the numerical solution of Fresnel’s equation. Comput Math Appl, 1995, 29(9): 53-76.

[23]

Schmidt F., Yevick D. Discrete transparent boundary conditions for Schrödinger-type equations. J Comput Phys, 1997, 134: 96-107.

[24]

Sulem C., Sulem P. The Nonlinear Schrödinger Equation, 2000, Berlin: Springer.

[25]

Sun Z. Z., Wu X. The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions. J Comput Phys, 2006, 214(1): 209-223.

[26]

Yevick D., Friese T., Schmidt F. A comparison of transparent boundary conditions for the Fresnel equation. J Comput Phys, 2001, 168: 433-444.

[27]

Zheng C. Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations. J Comput Phys, 2006, 215: 552-565.

[28]

Zheng C. Approximation, stability and fast evaluation of exact artificial boundary condition for the one-dimensional heat equation. J Comput Math, 2007, 25(6): 730-745.

AI Summary AI Mindmap
PDF (3388KB)

757

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/