On g-s-supplemented subgroups of finite groups

Wenbin Guo , Fengyan Xie , Yi Lu

Front. Math. China ›› 2010, Vol. 5 ›› Issue (2) : 287 -295.

PDF (121KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (2) : 287 -295. DOI: 10.1007/s11464-010-0006-8
Research Article
Research articles

On g-s-supplemented subgroups of finite groups

Author information +
History +
PDF (121KB)

Abstract

A subgroup H of a group G is said to be g-s-supplemented in G if there exists a subgroup K of G such that HKG and HKHsG, where HsG is the largest s-permutable subgroup of G contained in H. By using this new concept, we establish some new criteria for a group G to be soluble.

Keywords

Finite group / g-s-supplemented subgroup / Sylow subgroup / soluble group

Cite this article

Download citation ▾
Wenbin Guo, Fengyan Xie, Yi Lu. On g-s-supplemented subgroups of finite groups. Front. Math. China, 2010, 5(2): 287-295 DOI:10.1007/s11464-010-0006-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Doerk K., Hawkes T. Finite Solvable Groups, 1992, New York: Walter de Gruyter.

[2]

Gross F. Conjugacy of odd order Hall subgroups. Bull London Math Soc, 1987, 19: 311-319.

[3]

Guo W. The Theory of Class of Groups, 2000, Beijing, New York, Dordrecht, Boston, London: Science Press-Kluwer Academic Publishers.

[4]

Guo W. O. ℱ-supplemented subgroups of finite groups. Manuscripta Math, 2008, 127: 139-150.

[5]

Guo W., Shum K. P., Skiba A. N. On solubility and supersolubility of some classes of finite groups. Science in China, Ser A: Mathematics, 2009, 52(2): 272-286.

[6]

Hall P. A characteristic property of soluble groups. J London Math Soc, 1937, 12: 198-200.

[7]

Kegel O. H. Produkte nilpotenter gruppen. Arch Math (Basel), 1961, 12: 90-93.

[8]

Kegel O. H. Sylow-Gruppen and subnormaleiler end licher Gruppen. Math Z, 1962, 78: 205-221.

[9]

Kegel O H. On Huppert’s characterization of finite supersoluble groups. In: Proceedings of the International Conference on Theory Groups, Canberra 1965. 209–215

[10]

Robinson D. J. S. A Course in Theory of Group, 1982, New York: Spinger-Verlag.

[11]

Skiba A. N. On weakly s-permutable subgroups of finite groups. J Algebra, 2007, 315: 192-209.

[12]

Wang Y. Finite group with some subgroups of Sylow subgroups c-supplemented. J Algebra, 2000, 224: 467-478.

AI Summary AI Mindmap
PDF (121KB)

769

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/