Well-posedness of stochastic Korteweg-de Vries-Benjamin-Ono equation

Guolian Wang, Boling Guo

Front. Math. China ›› 2010, Vol. 5 ›› Issue (1) : 161-177.

PDF(216 KB)
Front. Math. China All Journals
PDF(216 KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (1) : 161-177. DOI: 10.1007/s11464-009-0057-x
Research Article
Research articles

Well-posedness of stochastic Korteweg-de Vries-Benjamin-Ono equation

Author information +
History +

Abstract

In this paper, we consider the stochastic Korteweg-de Vries-Benjamin-Ono equation with white noise. Using Fourier restriction norm method and some basic inequalities, we obtain a local existence and uniqueness result for the solution of this problem. We also get global existence of the L2(ℝ) solution.

Keywords

Korteweg-de Vries-Benjamin-Ono (KdV-BO) equation / Fourier restriction norm / [k;Z]-multiplier / cylindrical Wiener process

Cite this article

Download citation ▾
Guolian Wang, Boling Guo. Well-posedness of stochastic Korteweg-de Vries-Benjamin-Ono equation. Front. Math. China, 2010, 5(1): 161‒177 https://doi.org/10.1007/s11464-009-0057-x
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Bergh J., Löfström J. Interpolation Spaces, 1976, Berlin: Springer-Verlag.
[2.]
de Bouard A., Debussche A. On the stochastic Korteweg-de Vries equation. J Funct Anal, 1998, 154: 215-251.
CrossRef Google scholar
[3.]
de Bouard A., Debussche A., Tsutsumi Y. White noise driven Korteweg-de Vries equation. J Funct Anal, 1999, 169: 532-558.
CrossRef Google scholar
[4.]
Chang H. Y., Lien C., Sukarto S., Raychaudhury S., Hill J., Tsikis E. K., Lonngren K. E. Propagation of ion-acoustic solitons in a non-quiescent plasma. Plasma Phys Control Fusion, 1986, 28: 675-681.
CrossRef Google scholar
[5.]
Guo B., Huo Z. The well-posedness of the Korteweg de Vries-Benjamin-Ono equation. J Math Anal Appl, 2004, 295: 444-458.
CrossRef Google scholar
[6.]
Herman R. L. The stochastic, damped Korteweg-de Vries equation. J Phys A, 1990, 23: 1063-1084.
CrossRef Google scholar
[7.]
Kenig C. E., Ponce G., Vega L. The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices. Duke Math J, 1993, 71: 1-21.
CrossRef Google scholar
[8.]
Kenig C. E., Ponce G., Vega L. A bilinear estimate with application to the Korteweg-De Vries equation. J Amer Math Soc, 1996, 9: 573-603.
CrossRef Google scholar
[9.]
Kim J. U. On the stochastic Benjamin-Ono equation. J Diff Eq, 2006, 228(2): 737-768.
CrossRef Google scholar
[10.]
Linares F. L2 Global well-posedness of the initial value problem associated to the Benjamin equation. J Diff Eq, 1999, 152: 1425-1433.
CrossRef Google scholar
[11.]
Matsuno Y. Stochastic Benjamin-Ono equation and its application to the dynamics of nonlinear random waves. Phys Rev E, 1996, 52(6): 6313-6322.
CrossRef Google scholar
[12.]
Da Prato G., Zabczyk J. Stochastic Equations in infinite Dimensions, 1992, Cambridge: Cambridge University Press.
[13.]
Scalerandi M., Romano A., Condat C. A. Korteweg-de Vries solitons under additive stochastic perturbations. Phys Rev E, 1998, 58: 709-712.
CrossRef Google scholar
[14.]
Tao T. Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equation. Amer J Math, 2001, 123: 839-908.
CrossRef Google scholar
AI Summary AI Mindmap
PDF(216 KB)

568

Accesses

4

Citations

Detail

Sections
Recommended

/