Leibniz algebras with pseudo-Riemannian bilinear forms

Jie Lin, Zhiqi Chen

Front. Math. China ›› 2010, Vol. 5 ›› Issue (1) : 103-115.

PDF(165 KB)
Front. Math. China All Journals
PDF(165 KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (1) : 103-115. DOI: 10.1007/s11464-009-0055-z
Research Article
Research articles

Leibniz algebras with pseudo-Riemannian bilinear forms

Author information +
History +

Abstract

M. Bordemann has studied non-associative algebras with nondegenerate associative bilinear forms. In this paper, we focus on pseudo-Riemannian bilinear forms and study pseudo-Riemannian Leibniz algebras, i.e., Leibniz algebras with pseudo-Riemannian non-degenerate symmetric bilinear forms. We give the notion and some properties of T*-extensions of Leibniz algebras. In addition, we introduce the definition of equivalence and isometrical equivalence for two T*-extensions of a Leibniz algebra, and give a sufficient and necessary condition for the equivalence and isometrical equivalence.

Keywords

Leibniz algebra / T*-extension / pseudo-Riemannian bilinear form

Cite this article

Download citation ▾
Jie Lin, Zhiqi Chen. Leibniz algebras with pseudo-Riemannian bilinear forms. Front. Math. China, 2010, 5(1): 103‒115 https://doi.org/10.1007/s11464-009-0055-z
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Albeverio S., Ayupov S. A., Omirov B. A. On nilpotent and simple Leibniz algebras. Comm Algebra, 2005, 33: 159-172.
CrossRef Google scholar
[2.]
Bajo I., Benayadi S., Medina A. Symplectic structures on quadratic Lie algebras. J Algebra, 2007, 316: 174-188.
CrossRef Google scholar
[3.]
Bordemann M. Nondegenerate invariant bilinear forms on nonassociative algebras. Acta Math Univ Comenianae, 1997, LXVI: 151-201.
[4.]
Daletskii Y. L., Takhtajan L. A. Leibniz and Lie algebra structures for Nambu algebra. Lett Math Phys, 1997, 39: 127-141.
CrossRef Google scholar
[5.]
Gao Y. Leibniz homology of unitary Lie algebras. J Pure Appl Algebra, 1999, 140: 33-56.
CrossRef Google scholar
[6.]
Keith V S. On bilinear forms on finite dimensional Lie algebras. Dissertation. University of New Orleans, 1984
[7.]
Loday J. L. Cyclic Homology, 1992, Berlin: Springer.
[8.]
Loday J. L. Une version non commutative des algébres de Lie: les algèbres de Leibniz. Enseign Math, 1993, 39: 269-292.
[9.]
Loday J. L. Künneth-style formula for the homology of Leibniz algebras. Math Z, 1996, 221: 41-47.
CrossRef Google scholar
[10.]
Loday J. L., Parashvili T. Universal enveloping algebras of Leibniz algebras and (co)homology. Math Ann, 1993, 296: 139-158.
CrossRef Google scholar
[11.]
Lodder J. M. Leibniz homology and the Hilton-Milnor theorem. Topology, 1997, 36: 729-743.
CrossRef Google scholar
[12.]
Medina A., Revoy P. Algebras de Lie et produit scalaire invariant. Ann Sci Ecole Normale Supp, 1985, 18: 553-561.
[13.]
Milnor J. Curvatures of left invariant metrics on Lie groups. Advances in Math, 1976, 21: 293-329.
CrossRef Google scholar
[14.]
Nambu Y. Generalized Hamiltonian dynamics. Phys Rev D, 1973, 7: 2405-2412.
CrossRef Google scholar
[15.]
Pirashvili T. On Leibniz homology. Ann Inst Fourier, 1994, 44: 401-411.
[16.]
Takhtajan L. A. On foundation of the generalized Nambu mechanics. Comm Math Phys, 1994, 160: 295-315.
CrossRef Google scholar
AI Summary AI Mindmap
PDF(165 KB)

762

Accesses

1

Citations

Detail

Sections
Recommended

/