Approximation of kernel matrices by circulant matrices and its application in kernel selection methods
Guohui Song , Yuesheng Xu
Front. Math. China ›› 2009, Vol. 5 ›› Issue (1) : 123 -160.
Approximation of kernel matrices by circulant matrices and its application in kernel selection methods
This paper focuses on developing fast numerical algorithms for selection of a kernel optimal for a given training data set. The optimal kernel is obtained by minimizing a cost functional over a prescribed set of kernels. The cost functional is defined in terms of a positive semi-definite matrix determined completely by a given kernel and the given sampled input data. Fast computational algorithms are developed by approximating the positive semi-definite matrix by a related circulant matrix so that the fast Fourier transform can apply to achieve a linear or quasi-linear computational complexity for finding the optimal kernel. We establish convergence of the approximation method. Numerical examples are presented to demonstrate the approximation accuracy and computational efficiency of the proposed methods.
Optimal kernel / reproducing kernel / reproducing kernel Hilbert space / learning with kernel / circulant matrix / B-spline kernel
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
/
| 〈 |
|
〉 |