Approximation of kernel matrices by circulant matrices and its application in kernel selection methods

Guohui Song , Yuesheng Xu

Front. Math. China ›› 2009, Vol. 5 ›› Issue (1) : 123 -160.

PDF (370KB)
Front. Math. China ›› 2009, Vol. 5 ›› Issue (1) : 123 -160. DOI: 10.1007/s11464-009-0054-0
Research Article
Research articles

Approximation of kernel matrices by circulant matrices and its application in kernel selection methods

Author information +
History +
PDF (370KB)

Abstract

This paper focuses on developing fast numerical algorithms for selection of a kernel optimal for a given training data set. The optimal kernel is obtained by minimizing a cost functional over a prescribed set of kernels. The cost functional is defined in terms of a positive semi-definite matrix determined completely by a given kernel and the given sampled input data. Fast computational algorithms are developed by approximating the positive semi-definite matrix by a related circulant matrix so that the fast Fourier transform can apply to achieve a linear or quasi-linear computational complexity for finding the optimal kernel. We establish convergence of the approximation method. Numerical examples are presented to demonstrate the approximation accuracy and computational efficiency of the proposed methods.

Keywords

Optimal kernel / reproducing kernel / reproducing kernel Hilbert space / learning with kernel / circulant matrix / B-spline kernel

Cite this article

Download citation ▾
Guohui Song, Yuesheng Xu. Approximation of kernel matrices by circulant matrices and its application in kernel selection methods. Front. Math. China, 2009, 5(1): 123-160 DOI:10.1007/s11464-009-0054-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Argyriou A., Micchelli C. A., Pontil M., Ying Y. A spectral regularization framework for multi-task structure learning. NIPS, 2008, 20: 25-32.

[2]

Aronszajn N. Theory of reproducing kernels. Trans Amer Math Soc, 1950, 68: 337-404.

[3]

Bhatia R. Matrix Analysis, 1997, New York: Springer.

[4]

Bochner S. Lectures on Fourier Integrals, 1959, Princeton: Princeton University Press.

[5]

de Boor C. A Practical Guide to Splines, 1978, New York: Springer-Verlag.

[6]

Bousquet O., Herrmann D. J. L. On the complexity of learning the kernel matrix. NIPS, 2003, 15: 399-406.

[7]

Chapelle O., Vapnik V., Bousquet O., Mukherjee S. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46: 131-159.

[8]

Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. Introduction to Algorithms, 2001, Boston: MIT Press.

[9]

Cristianini N., Shawe-Taylor J., Elisseeff A., Kandola J. On kernel-target alignment. NIPS, 2002, 14: 367-373.

[10]

Cucker F., Smale S. On the mathematical foundations of learning. Bull Amer Math Soc, 2002, 39: 1-49.

[11]

Davis P. J. Circulant Matrices, 1979, New York: John Wiley & Sons Inc.

[12]

Demko S., Moss W., Smith P. Decay rates for inverses of band matrices. Math Comput, 1984, 43: 491-499.

[13]

Drucker H., Wu D., Vapnik V. N. Support vector machines for span categorization. IEEE Trans Neural Networks, 1999, 10: 1048-1054.

[14]

Durrett R. Probability: Theory and Examples, 1996, Belmont: Duxbury Press.

[15]

Gasquet C., Witomski P. Fourier Analysis and Applications, 1999, New York: Springer-Verlag.

[16]

Gelfand I., Raikov D., Shilov G. Commutative Normed Rings, 1964, New York: Bronx: Chelsea Publishing Company.

[17]

Gray R. M. Toeplitz and Circulant Matrices: A Review, 2006, Boston: Now Publishers Inc.

[18]

Grenander U., Szegö G. Toeplitz Forms and Their Applications, 1958, Berkeley and Los Angeles: University of Calif Press.

[19]

Horn R. A., Johnson C. R. Matrix Analysis, 1986, Cambridge: Cambridge University Press.

[20]

Kimeldorf G., Wahba G. Some results on Tchebycheffian spline functions. J Math Anal Appl, 1971, 33: 82-95.

[21]

Lanckriet G. R. G., Cristianini N., Bartlett P., El Ghaoui L., Jordan M. I. Learning the kernel matrix with semi-definite programming. J Mach Learn Res, 2004, 5: 27-72.

[22]

Lin Y., Brown L. D. Statistical properties of the method of regularization with periodic Gaussian reproducing kernel. Ann Statis, 2004, 32: 1723-1743.

[23]

Micchelli C. A., Pontil M. Learning the kernel function via regularization. J Mach Learn Res, 2005, 6: 1099-1125.

[24]

Micchelli C. A., Pontil M. On learning vector-valued functions. Neural Comput, 2005, 17: 177-204.

[25]

Müller K. -R., Smola A. J., Rätsch G., Schölkopf B., Kohlmorgen J., Vapnik V. N. Predicting time series with support vector machines. Lecture Notes in Computer Science, 1997, 1327: 999-1004.

[26]

Schölkopf B., Smola A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, 2004, Cambridge: MIT Press.

[27]

Serre T., Wolf L., Bileschi S., Riesenhuber M., Poggio T. Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Analysis and Machine Intelligence, 2007, 29: 411-426.

[28]

Shawe-Taylor J., Cristianini N. Kernel Methods for Pattern Analysis, 2004, Cambridge: Cambridge University Press.

[29]

Smola A. J., Schölkopf B. On a kernel-based method for pattern recognition, regression, approximation, and operator inversion. Algorithmica, 1998, 22: 211-231.

[30]

Sung K. K., Poggio T. Example-based learning for view-based human face detection. IEEE Trans Pattern Analysis and Machine Intelligence, 1998, 20: 39-51.

[31]

Vapnik V. N. Statistical Learning Theory, 1998, New York: Wiley.

[32]

Xu Y., Zhang H. Refinable kernels. J Mach Learn Res, 2007, 8: 2083-2120.

[33]

Xu Y., Zhang H. Refinement of reproducing kernels. J Mach Learn Res, 2009, 10: 137-170.

[34]

Ying Y., Zhou D. X. Learnability of Gaussians with flexible variances. J Mach Learn Res, 2007, 8: 249-276.

AI Summary AI Mindmap
PDF (370KB)

951

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/