Characterization of finite simple group Dn(2)

Lingli Wang

Front. Math. China ›› 2009, Vol. 5 ›› Issue (1) : 179-190.

PDF(183 KB)
Front. Math. China All Journals
PDF(183 KB)
Front. Math. China ›› 2009, Vol. 5 ›› Issue (1) : 179-190. DOI: 10.1007/s11464-009-0053-1
Research Article
Research articles

Characterization of finite simple group Dn(2)

Author information +
History +

Abstract

Let G be a finite group, and let πe(G) be the spectrum of G, that is, the set of all element orders of G. In 1987, Shi Wujie put forward the following conjecture. If G is a finite group and M is a non-abelian simple group, then GM if and only if |G| = |M| and πe(G) = πe(M). In this short paper, we prove that if G is a finite group, then GM if and only if |G| = |M| and πe(G) = πe(M), where M = Dn(2) and n is even.

Keywords

Finite group / simple group / order of element / prime graph

Cite this article

Download citation ▾
Lingli Wang. Characterization of finite simple group Dn(2). Front. Math. China, 2009, 5(1): 179‒190 https://doi.org/10.1007/s11464-009-0053-1
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Cao H. P., Shi W. J. Pure quantitative characterization of finite projective special unitary groups. Science in China, Ser A, 2002, 45(6): 761-772.
[2.]
Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of Finite Groups, 1985, Oxford: Clarendon Press.
[3.]
Mazurov V D, Khukhro E I. Unsolved Problems in Group Theory. The Kourovka Notebook. Novosibirsk, 1998, 87
[4.]
Shi W. J. A new characterization of the sporadic simple groups. Group Theory-Porc Singapore Group Theory Conf, 1987, 1989, Berlin-New York: Walter de Gruyter, 531-540.
[5.]
Shi W. J. A new characterization of some simple groups of Lie type. Contemporary Math, 1989, 82: 171-180.
[6.]
Shi W. J. Pure quantitative characterization of finite simple groups (I). Progress in Natural Science, 1994, 4(3): 316-326.
[7.]
Shi W. J., Bi J. X. A characteristic property for each finite projective special linear group. Lecture Notes in Math, 1990, 1456: 171-180.
CrossRef Google scholar
[8.]
Shi W. J., Bi J. X. A characterization of Suzuki-Ree groups. Science in China, Ser A, 1991, 34(1): 14-19.
[9.]
Shi W. J., Bi J. X. A characterization of the alternating groups. Southeast Asian Bulletin of Mathematics, 1992, 16(1): 81-90.
[10.]
Shi W. J., Tang C. Y. A characterization of some orthogonal groups. Progress in Natural Science, 1997, 7: 155-162.
[11.]
Vasil’ev A. V. On connection between the structure of a finite group and the properties of its prime graph. Siberian Mathematical Journal, 2005, 46(3): 396-404.
CrossRef Google scholar
[12.]
Vasil’ev A. V., Vdovin E. P. An adjacency criterion for two vertices of the prime graph of a finite simple group. Algebra and Logic, 2005, 44: 381-406.
CrossRef Google scholar
[13.]
Williams J. S. Prime graph components of finite groups. J Algebra, 1981, 69: 487-513.
CrossRef Google scholar
[14.]
Xu M. C., Shi W. J. Pure quantitative characterization of finite simple groups 2Dn(q) and Dl(q) (l odd). Algebra Coll, 2003, 3: 427-443.
[15.]
Zsigmondy K. Zur Theorie der Potenzreste. Monatsh Mathematical Physics, 1892, 3: 265-284.
CrossRef Google scholar
AI Summary AI Mindmap
PDF(183 KB)

606

Accesses

0

Citations

Detail

Sections
Recommended

/