PDF
(182KB)
Abstract
This paper is concerned with the optimal control of jump type stochastic differential equations associated with (general) Lévy generators. The maximum principle is formulated for the solutions of the equations, which is inspired by N. C. Framstad, B. Øksendal and A. Sulem [J. Optim. Theory Appl., 2004, 121: 77–98] (and a continuation, J. Bennett and J. -L. Wu [Front. Math. China, 2007, 2(4): 539–558]). The result is then applied to optimization problems in financial models driven by Lévy-type processes.
Keywords
Lévy generators
/
jump type stochastic differential equation
/
optimal control
/
maximum principle
/
portfolio optimization
Cite this article
Download citation ▾
Jonathan Bennett, Jiang-Lun Wu.
Stochastic control of SDEs associated with Lévy generators and application to financial optimization.
Front. Math. China, 2009, 5(1): 89-102 DOI:10.1007/s11464-009-0052-2
| [1] |
Albeverio S. B., Rüdiger B., Wu J. -L. Invariant measures and symmetry property of Lévy type operators. Potential Anal, 2000, 13: 147-168.
|
| [2] |
Applebaum D. Lévy Processes and Stochastic Calculus, 2004, Cambridge: Cambridge Univ Press.
|
| [3] |
Barndorff-Nielsen O. E., Mikosch T., Resnick S. I. Lévy Processes. Theory and Applications, 2001, Boston: Birkhäuser, Inc.
|
| [4] |
Bass R. F. Uniqueness in law for pure jump type Mark processes. Probab Th Rel Fields, 1988, 79: 271-287.
|
| [5] |
Bennett J., Wu J. -L. Stochastic differential equations with polar-decomposed Lévy measures and applications to stochastic optimization. Front Math China, 2007, 2(4): 539-558.
|
| [6] |
Bennett J., Wu J. -L. An optimal stochastic control problem for SDEs driven by a general Lévy-type process. Stoch Anal Appl, 2008, 26(3): 471-494.
|
| [7] |
Bertoin J. Lévy Processes, 1996, Cambridge: Cambridge Univ Press.
|
| [8] |
Crandall M. G., Ishii H., Lions P. -L. User’s guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc (NS), 1992, 27(1): 1-67.
|
| [9] |
El Karoui N., Lepeltier J. -P. Représentation des processus ponctuels multivariés à l’aide d’un processus de Poisson. Z Wahr verw Geb, 1977, 39: 111-133.
|
| [10] |
Ethier S. N., Kurtz T. G. Markov Processes: Characterization and Convergence, 1986, New York: John Wiley and Sons.
|
| [11] |
Framstad N. C., Øksendal B., Sulem A. Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance. J Optim Theory Appl, 2004, 121: 77-98.
|
| [12] |
Ikeda N., Watanabe S. Stochastic Differential Equations and Diffusion Processes, 1981, Kodansha: North-Holland.
|
| [13] |
Ishikawa Y. Optimal control problem associated with jump processes. Appl Math Optim, 2004, 50: 21-65.
|
| [14] |
Jacob N. Pseudo-Differential Operators and Markov Processes. Vol I—Fourier Analysis and Semigroups, 2001, London: Imperial College Press.
|
| [15] |
Jacob N. Pseudo-Differential Operators and Markov Processes. Vol II—Generators and Their Potential Theory, 2002, London: Imperial College Press.
|
| [16] |
Jacob N. Pseudo-Differential Operators and Markov Processes. Vol III—Markov Processes and Applications, 2005, London: Imperial College Press.
|
| [17] |
Jakobsen E. R., Karlsen K. H. Continuous dependence estimates for viscosity solutions of integro-PDEs. J Differential Equations, 2005, 212(2): 278-318.
|
| [18] |
Jakobsen E. R., Karlsen K. H. A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations. NoDEA Nonlinear Differential Equations Appl, 2006, 13(2): 137-165.
|
| [19] |
Kabanov Y. M. Rozovskii B. L., Kabanov Y. M., Shiryaev A. N. On the Pontryagin maximum principle for SDEs with a Poisson-type driving noise. Statistics and Control of Stochastic Processes, 1997, River Edge: World Scientific, 173-190.
|
| [20] |
Kohlmann M. Optimality conditions in optimal control of jump processes-extended abstract. Proceedings in Operations Research, Physica, Würzburg, Germany, 1978, 7: 48-57.
|
| [21] |
Kolokoltsov V. Symmetric stable laws and stable-like jump-diffusions. Proc London Math Soc, 2000, 80: 725-768.
|
| [22] |
Komatsu T. Markov processes associated with certain integro-differential operators. Osaka J Math, 1973, 10: 271-303.
|
| [23] |
Komatsu T. On the martingale problem for generators of stable processes with perturbations. Osaka J Math, 1984, 21: 113-132.
|
| [24] |
Li J., Peng S. Stochastic optimization theory of backward stochastic differential equations with jumps and viscosity solutions of Hamilton-Jacobi-Bellman equations. Nonlinear Anal, 2009, 70(4): 1776-1796.
|
| [25] |
Negoro A., Tsuchiya M. Stochastic processes and semigroups associated with degenerate Lévy generating operators. Stochastics Stochastics Rep, 1989, 26: 29-61.
|
| [26] |
Øksendal B., Sulem A. Applied Stochastic Control of Jump Diffusions. Universitext, 2005, Berlin: Springer-Verlag.
|
| [27] |
Samorodnitsky G., Taqqu M. Stable non-Gaussian Random Processes. Stochastic Models with Infinite Variance, 1994, New York: Chapman and Hall.
|
| [28] |
Sato K. Lévy Processes and Infinitely Divisible Distributions, 1999, Cambridge: Cambridge Univ Press.
|
| [29] |
Stroock D. W. Diffusion processes associated with Lévy generators. Z Wahr verw Geb, 1975, 32: 209-244.
|
| [30] |
Stroock D. W. Markov Processes from K. Itô’s Perspective. Ann Math Stud, Vol 155, 2003, Princeton: Princeton Univ Press.
|
| [31] |
Tang S., Li X. Necessary conditions for optimal control of stochastic systems with random jumps. SIAM Journal on Control and Optimization, 1994, 32: 1447-1475.
|
| [32] |
Tsuchiya M. Lévy measure with generalized polar decomposition and the associated SDE with jumps. Stochastics Stochastics Rep, 1992, 38: 95-117.
|