Elementary proof of a theorem of Blackburn

Haipeng Qu

Front. Math. China ›› 2009, Vol. 5 ›› Issue (1) : 117 -122.

PDF (110KB)
Front. Math. China ›› 2009, Vol. 5 ›› Issue (1) : 117 -122. DOI: 10.1007/s11464-009-0051-3
Research Article
Research articles

Elementary proof of a theorem of Blackburn

Author information +
History +
PDF (110KB)

Abstract

For a positive integer n, a finite p-group G is called an ℳn-group, if all subgroups of index pn of G are metacyclic, but there is at least one subgroup of index pn−1 that is not. A classical result in p-group theory is the classification of ℳ1-groups by Blackburn. In this paper, we give a slightly shorter and more elementary proof of this result.

Keywords

Finite p-group / n-group / minimal non-abelian group / minimal non-metacyclic group

Cite this article

Download citation ▾
Haipeng Qu. Elementary proof of a theorem of Blackburn. Front. Math. China, 2009, 5(1): 117-122 DOI:10.1007/s11464-009-0051-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blackburn N. Generalizations of certain elementary theorems on p-groups. Proc London Math Soc, 1961, 11(3): 1-22.

[2]

Burnside W. Theory of Groups of Finite Order, 1897, Cambridge: Cambridge University Press.

[3]

Huppert B. Endliche Gruppen I, 1967, Berlin: Springer-Verlag.

[4]

Rédei L. Das schiefe Product in der Gruppentheorie. Comment Math Helvet, 1947, 20: 225-267.

AI Summary AI Mindmap
PDF (110KB)

747

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/