Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models

Junping Shi

Front. Math. China ›› 2009, Vol. 4 ›› Issue (3) : 407 -424.

PDF (220KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (3) : 407 -424. DOI: 10.1007/s11464-009-0026-4
Survey Article
SURVEY ARTICLE

Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models

Author information +
History +
PDF (220KB)

Abstract

Recent advances in abstract local and global bifurcation theory is briefly reviewed. Several applications are included to illustrate the applications of abstract theory, and it includes Turing instability of chemical reactions, pattern formation in water limited ecosystems, and diffusive predator-prey models.

Keywords

Bifurcation / reaction-diffusion model

Cite this article

Download citation ▾
Junping Shi. Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models. Front. Math. China, 2009, 4(3): 407-424 DOI:10.1007/s11464-009-0026-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambrosetti A., Prodi G. A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, Vol 34, 1995, Cambridge: Cambridge University Press.

[2]

Cantrell R. S., Cosner C. Spatial Ecology via Reaction-diffusion Equation. Wiley Series in Mathematical and Computational Biology, 2003, New York: John Wiley & Sons Ltd.

[3]

Chang K. -C. Methods in Nonlinear Analysis. Springer Monographs in Mathematics, 2005, Berlin: Springer-Verlag.

[4]

Cheng K. S. Uniqueness of a limit cycle for a predator-prey system. SIAM J Math Anal, 1981, 12(4): 541-548.

[5]

Chow S. N., Hale J. K. Methods of Bifurcation Theory, 1982, New York-Berlin: Springer-Verlag.

[6]

Conway E. D. Fitzgibbon W. E. Diffusion and predator-prey interaction: pattern in closed systems. Partial Differential Equations and Dynamical Systems, 1984, Boston-London: Pitman, 85-133.

[7]

Crandall M. G., Rabinowitz P. H. Bifurcation from simple eigenvalues. Jour Func Anal, 1971, 8: 321-340.

[8]

Crandall M. G., Rabinowitz P. H. Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch Rational Mech Anal, 1973, 52: 161-180.

[9]

De Kepper P., Castets V., Dulos E., Boissonade J. Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Physica D, 1991, 49: 161-169.

[10]

Deimling K. Nonlinear Functional Analysis, 1985, Berlin-New York: Springer-Verlag.

[11]

Du Y. H., Shi J. P. Brunner H., Zhao X. Q., Zou X. F. Some recent results on diffusive predator-prey models in spatially heterogeneous environment. Nonlinear Dynamics and Evolution Equations, 2006, Providence: American Mathematical Society, 95-135.

[12]

Epstein I. R., Pojman J. A. An Introduction to Nonlinear Chemical Dynamics, 1998, Oxford: Oxford University Press.

[13]

Gray P., Scott S. K. Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics, 1990, Oxford: Clarendon Press.

[14]

Han S. M., Benaroya H., Wei T. Dynamics of transversely vibrating beams using four engineering theories. Jour Sound and Vibr, 1999, 225(5): 935-988.

[15]

Henry D. Geometric Theory of Semilinear Parabolic Equations, 1981, Berlin-New York: Springer-Verlag.

[16]

Hsu S. -B. Ordinary Differential Equations with Applications, 2006, Hackensack: World Scientific Publishing Co Pte Ltd.

[17]

Hsu S-B, Shi J P. Relaxation oscillator profile of limit cycle in predator-prey system. Disc Cont Dyns Syst -B (to appear)

[18]

Jang J., Ni W. -M., Tang M. X. Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model. J Dynam Differential Equations, 2004, 16(2): 297-320.

[19]

Jiang J. F., Shi J. P. Bistability dynamics in some structured ecological models. Spatial Ecology: A Collection of Essays, 2009, Boca Raton: CRC Press.

[20]

Kielhöfer H. Bifurcation Theory. An Introduction with Applications to PDEs, 2004, New York: Springer-Verlag.

[21]

Lengyel I., Epstein I. R. Modeling of Turing structure in the Chlorite-iodide-malonic acid-starch reaction system. Science, 1991, 251: 650-652.

[22]

Lengyel I., Epstein I. R. A chemical approach to designing Turing patterns in reaction-diffusion system. Proc Natl Acad Sci USA, 1992, 89: 3977-3979.

[23]

Liu P., Shi J. P., Wang Y. W. Imperfect transcritical and pitchfork bifurcations. Jour Func Anal, 2007, 251(2): 573-600.

[24]

López-Gómez J. Spectral Theory and Nonlinear Functional Analysis, 2001, Boca Raton: Chapman & Hall/CRC.

[25]

Medvinsky A. B., Petrovskii S. V., Tikhonova I. A., Malchow H., Li B. -L. Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev, 2002, 44(3): 311-370.

[26]

Meron E., Gilad E., von Hardenberg J., Shachak M., Zarmi Y. Vegetation patterns along a rainfall gradient. Chaos Solitons Fractals, 2004, 19: 367-376.

[27]

Murray J. D. Mathematical Biology. I. An Introduction, 2003 3 New York: Springer-Verlag.

[28]

Murray J. D. Mathematical Biology. II. Spatial Models and Biomedical Applications, 2003, New York: Springer-Verlag.

[29]

Ni W. -M., Tang M. X. Turing patterns in the Lengyel-Epstein system for the CIMA reaction. Trans Amer Math Soc, 2005, 357(10): 3953-3969.

[30]

Nirenberg L. Topics in Nonlinear Functional Analysis, 2001, Providence: American Mathematical Society.

[31]

Nishiura Y. Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J Math Anal, 1982, 13(4): 555-593.

[32]

Okubo A., Levin S. Diffusion and Ecological Problems: Modern Perspectives, 2001 2 New York: Springer-Verlag.

[33]

Pejsachowicz J., Rabier P. J. Degree theory for C1 Fredholm mappings of index 0. J Anal Math, 1998, 76: 289-319.

[34]

Rabinowitz P. H. Some global results for nonlinear eigenvalue problems. Jour Func Anal, 1971, 7: 487-513.

[35]

Reiss E. L. Keller J. B., Antman S. Column buckling—an elementary example of bifurcation. Bifurcation Theory and Nonlinear Eigenvalue Problems, 1969, New York-Amsterdam: W A Benjamin, Inc, 1-16.

[36]

Reiss E. L. Imperfect bifurcation. Applications of Bifurcation Theory, 1977, New York: Academic Press, 37-71.

[37]

Rosenzweig M. L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 1971, 171(3969): 385-387.

[38]

Shi J. P. Persistence and bifurcation of degenerate solutions. Jour Func Anal, 1999, 169(2): 494-531.

[39]

Shi J. P. Solution Set of Semilinear Elliptic Equations: Global Bifurcation and Exact Multiplicity, 2009, Singapore: World Scientific Publishing Co Pte Ltd.

[40]

Shi J. P., Wang X. F. On global bifurcation for quasilinear elliptic systems on bounded domains. Jour Diff Equations, 2009, 246(7): 2788-2812.

[41]

Timosehnko S. P. History of Strength of Materials, 1953, New York: Dover Publications, Inc.

[42]

Turing A. M. The chemical basis of morphogenesis. Philosophical Transaction of Royal Society of London, 1952, B237: 37-72.

[43]

Hardenberg J, Meron E, Shachak M, Zarmi Y Diversity of vegetation patterns and desertification. Phys Rev Lett, 2001, 87: 198101

[44]

Yi F. Q., Wei J. J., Shi J. P. Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Anal Real World Appl, 2008, 9(3): 1038-1051.

[45]

Yi F. Q., Wei J. J., Shi J. P. Bifurcation and spatio-temporal patterns in a diffusive homogenous predator-prey system. Jour Diff Equations, 2009, 246(5): 1944-1977.

[46]

Yi F. Q., Wei J. J., Shi J. P. Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system. Appl Math Lett, 2009, 22(1): 52-55.

AI Summary AI Mindmap
PDF (220KB)

920

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/