Convergence of Runge-Kutta methods for neutral Volterra delay-integro-differential equations

Wansheng Wang, Shoufu Li

Front. Math. China ›› 2009, Vol. 4 ›› Issue (1) : 195-216.

PDF(231 KB)
Front. Math. China All Journals
PDF(231 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (1) : 195-216. DOI: 10.1007/s11464-009-0021-9
Research Article
RESEARCH ARTICLE

Convergence of Runge-Kutta methods for neutral Volterra delay-integro-differential equations

Author information +
History +

Abstract

In this paper, we focus on the error behavior of Runge-Kutta methods for nonlinear neutral Volterra delay-integro-differential equations (NVDIDEs) with constant delay. The convergence properties of the Runge-Kutta methods with two classes of quadrature technique, compound quadrature rule and Pouzet type quadrature technique, are investigated.

Keywords

Neutral differential equation / Volterra delay-integro-differential equation / Runge-Kutta method / convergence

Cite this article

Download citation ▾
Wansheng Wang, Shoufu Li. Convergence of Runge-Kutta methods for neutral Volterra delay-integro-differential equations. Front. Math. China, 2009, 4(1): 195‒216 https://doi.org/10.1007/s11464-009-0021-9
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Baker C. T. H. A perspective on the numerical treatment of Volterra equations. J Comput Appl Math, 2000, 125: 217-249.
CrossRef Google scholar
[2.]
Baker C. T. H., Ford N. J. Stability properties of a scheme for the approximate solution of a delay integro-differential equation. Appl Numer Math, 1992, 9: 357-370.
CrossRef Google scholar
[3.]
Brunner H. The numerical solutions of neutral Volterra integro-differential equations with delay arguments. Ann Numer Math, 1994, 1: 309-322.
[4.]
Brunner H. Collocation Methods for Volterra Integral and Related Functional Differential Equations, 2004, Cambridge: Cambridge University Press.
[5.]
Brunner H. High-order collocation methods for singular Volterra functional equations of neutral type. Appl Numer Math, 2007, 57: 533-548.
CrossRef Google scholar
[6.]
Brunner H., van der Houwen P. J. The Numerical Solution of Volterra Equations. CWI Monographs, 1986, Amsterdam: Elsevier Science Publishers B V.
[7.]
Burrage K., Butcher J. C. Non-linear stability of a general class of differential equation methods. BIT, 1980, 20: 185-203.
CrossRef Google scholar
[8.]
Butcher J. C. The Numerical Analysis of Ordinary Differential Equations, 1987, New York: John Wiley.
[9.]
Enright W. H., Hu M. Continuous Runge-Kutta methods for neutral Volterra integro-differential equations with delay. Appl Numer Math, 1997, 24: 175-190.
CrossRef Google scholar
[10.]
Hairer E., Wanner G. Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems, 1991, Berlin: Springer-Verlag.
[11.]
Huang C. M., Fu H. Y., Li S. F., Chen G. N. D-convergence of Runge-Kutta methods for stiff delay differential equations. J Comput Math, 2001, 19: 259-268.
[12.]
Huang C. M., Li S. F., Fu H. Y., Chen G. N. Stability and error analysis of one-leg methods for nonlinear delay differential equations. J Comput Appl Math, 1999, 103: 263-279.
CrossRef Google scholar
[13.]
Jackiewicz Z. One-step methods of any order for neutral functional differential equations. SIAM J Numer Anal, 1984, 21: 486-511.
CrossRef Google scholar
[14.]
Jackiewicz Z. Quasilinear multistep methods and variable step predictor-corrector methods for neutral functional differential equations. SIAM J Numer Anal, 1986, 23: 423-452.
CrossRef Google scholar
[15.]
Jackiewicz Z., Kwapisz M., Lo E. Waveform relaxation methods for functional differential systems of neutral type. J Math Anal Appl, 1997, 207: 255-285.
CrossRef Google scholar
[16.]
Kolmanovskii V. B., Myshkis A. Introduction to the Theory and Applications of Functional Differential Equations, 1999, Dordrecht: Kluwer Academy.
[17.]
Koto T. Stability of Runge-Kutta methods for delay integro-differential equations. J Comput Appl Math, 2002, 145: 483-492.
CrossRef Google scholar
[18.]
Li S. F. Theory of Computational Methods for Stiff Differential Equations, 1997, Changsha: Hunan Science and Technology Publisher.
[19.]
Li S. F. B-theory of Runge-Kutta methods for stiff Volterra functional differential equations. Science in China, Ser A, 2003, 46: 662-674.
CrossRef Google scholar
[20.]
Li S. F. B-theory of general linear methods for stiff Volterra functional differential equations. Appl Numer Math, 2005, 53: 57-72.
CrossRef Google scholar
[21.]
Vermiglio R. Natural continuous extensions of Runge-Kutta methods for Volterra integro-differential equations. Numer Math, 1988, 53: 439-458.
CrossRef Google scholar
[22.]
Wang W. S. Numerical Analysis of Nonlinear Neutral Functional Differential Equations. Ph D Thesis, 2008, Xiangtan: Xiangtan University.
[23.]
Wang W S, Li S F. Convergence of one-leg methods for nonlinear neutral delay integro-differential equations. Science in China, Ser A (in press)
[24.]
Zhang C. J., Vandewalle S. Stability analysis of Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. IMA J Numer Anal, 2004, 24: 193-214.
CrossRef Google scholar
[25.]
Zhang C. J., Zhou S. Z. Nonlinear stability and D-convergence of Runge-Kutta methods for DDEs. J Comput Appl Math, 1997, 85: 225-237.
CrossRef Google scholar
AI Summary AI Mindmap
PDF(231 KB)

812

Accesses

18

Citations

Detail

Sections
Recommended

/