Convergence of Runge-Kutta methods for neutral Volterra delay-integro-differential equations?

Wansheng WANG, Shoufu LI

PDF(231 KB)
PDF(231 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (1) : 195-216. DOI: 10.1007/s11464-009-0021-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Convergence of Runge-Kutta methods for neutral Volterra delay-integro-differential equations?

Author information +
History +

Abstract

In this paper, we focus on the error behavior of Runge-Kutta methods for nonlinear neutral Volterra delay-integro-differential equations (NVDIDEs) with constant delay. The convergence properties of the Runge- Kutta methods with two classes of quadrature technique, compound quadrature rule and Pouzet type quadrature technique, are investigated.

Keywords

Neutral differential equation / Volterra delay-integro-differential equation / Runge-Kutta method / convergence

Cite this article

Download citation ▾
Wansheng WANG, Shoufu LI. Convergence of Runge-Kutta methods for neutral Volterra delay-integro-differential equations. Front Math Chin, 2009, 4(1): 195‒216 https://doi.org/10.1007/s11464-009-0021-9

References

[1]
Baker C T H. A perspective on the numerical treatment of Volterra equations. J Comput Appl Math, 2000, 125: 217-249
CrossRef Google scholar
[2]
Baker C T H, Ford N J. Stability properties of a scheme for the approximate solution of a delay integro-differential equation. Appl Numer Math, 1992, 9: 357-370
CrossRef Google scholar
[3]
Brunner H. The numerical solutions of neutral Volterra integro-differential equations with delay arguments. Ann Numer Math, 1994, 1: 309-322
[4]
Brunner H. Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge: Cambridge University Press, 2004
[5]
Brunner H. High-order collocation methods for singular Volterra functional equations of neutral type. Appl Numer Math, 2007, 57: 533-548
CrossRef Google scholar
[6]
Brunner H, Houwen P J van der. The Numerical Solution of Volterra Equations. CWI Monographs. Amsterdam: Elsevier Science Publishers B V, 1986
[7]
Burrage K, Butcher J C. Non-linear stability of a general class of differential equation methods. BIT, 1980, 20: 185-203
CrossRef Google scholar
[8]
Butcher J C. The Numerical Analysis of Ordinary Differential Equations. New York: John Wiley, 1987
[9]
Enright WH, Hu M. Continuous Runge-Kutta methods for neutral Volterra integrodifferential equations with delay. Appl Numer Math, 1997, 24: 175-190
CrossRef Google scholar
[10]
Hairer E, Wanner G. Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems. Berlin: Springer-Verlag, 1991
[11]
Huang C M, Fu H Y, Li S F, Chen G N, D-convergence of Runge-Kutta methods for stiff delay differential equations. J Comput Math, 2001, 19: 259-268
[12]
Huang C M, Li S F, Fu H Y, Chen G N. Stability and error analysis of one-leg methods for nonlinear delay differential equations. J Comput Appl Math, 1999, 103: 263-279
CrossRef Google scholar
[13]
Jackiewicz Z. One-step methods of any order for neutral functional differential equations. SIAM J Numer Anal, 1984, 21: 486-511
CrossRef Google scholar
[14]
Jackiewicz Z. Quasilinear multistep methods and variable step predictor-corrector methods for neutral functional differential equations. SIAM J Numer Anal, 1986, 23: 423-452
CrossRef Google scholar
[15]
Jackiewicz Z, Kwapisz M, Lo E. Waveform relaxation methods for functional differential systems of neutral type. J Math Anal Appl, 1997, 207: 255-285
CrossRef Google scholar
[16]
Kolmanovskii V B, Myshkis A. Introduction to the Theory and Applications of Functional Differential Equations. Dordrecht: Kluwer Academy, 1999
[17]
Koto T. Stability of Runge-Kutta methods for delay integro-differential equations. J Comput Appl Math, 2002, 145: 483-492
CrossRef Google scholar
[18]
Li S F. Theory of Computational Methods for Stiff Differential Equations. Changsha: Hunan Science and Technology Publisher, 1997
[19]
Li S F. B-theory of Runge-Kutta methods for stiff Volterra functional differential equations. Science in China, Ser A, 2003, 46: 662-674
CrossRef Google scholar
[20]
Li S F. B-theory of general linear methods for stiff Volterra functional differential equations. Appl Numer Math, 2005, 53: 57-72
CrossRef Google scholar
[21]
Vermiglio R. Natural continuous extensions of Runge-Kutta methods for Volterra integro-differential equations. Numer Math, 1988, 53: 439-458
CrossRef Google scholar
[22]
Wang W S. Numerical Analysis of Nonlinear Neutral Functional Differential Equations. Ph D Thesis. Xiangtan: Xiangtan University, 2008
[23]
Wang W S, Li S F. Convergence of one-leg methods for nonlinear neutral delay integro-differential equations. Science in China, Ser A (in press)
[24]
Zhang C J, Vandewalle S. Stability analysis of Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. IMA J Numer Anal, 2004, 24: 193-214
CrossRef Google scholar
[25]
Zhang C J, Zhou S Z. Nonlinear stability and D-convergence of Runge-Kutta methods for DDEs. J Comput Appl Math, 1997, 85: 225-237
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(231 KB)

Accesses

Citations

Detail

Sections
Recommended

/