Singularities of symplectic and Lagrangian mean curvature flows

Xiaoli Han , Jiayu Li

Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 283 -296.

PDF (181KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 283 -296. DOI: 10.1007/s11464-009-0018-4
Research Article
RESEARCH ARTICLE

Singularities of symplectic and Lagrangian mean curvature flows

Author information +
History +
PDF (181KB)

Abstract

In this paper, we study the singularities of the mean curvature flow from a symplectic surface or from a Lagrangian surface in a Käahler-Einstein surface. We prove that the blow-up flow Σs at a singular point (X0, T0) of a symplectic mean curvature flow Σt or of a Lagrangian mean curvature flow Σt is a nontrivial minimal surface in ℝ4, if Σ−∞ is connected.

Keywords

Symplectic surface / holomorphic curve / Lagrangian surface / minimal Lagrangian surface / mean curvature flow

Cite this article

Download citation ▾
Xiaoli Han, Jiayu Li. Singularities of symplectic and Lagrangian mean curvature flows. Front. Math. China, 2009, 4(2): 283-296 DOI:10.1007/s11464-009-0018-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J., Li J. Mean curvature flow of surface in 4-manifolds. Adv Math, 2001, 163: 287-309.

[2]

Chen J., Li J. Singularity of mean curvature flow of Lagrangian submanifolds. Invent Math, 2004, 156: 25-51.

[3]

Chen J., Tian G. Minimal surfaces in Riemannian 4-manifolds. Geom Funct Anal, 1997, 7: 873-916.

[4]

Cheng S. Y., Yau S. T. Differential equations on Riemannian manifolds and their geometric applications. Comm Pure Appl Math, 1975, 28(3): 333-354.

[5]

Chern S. S., Wolfson J. Minimal surfaces by moving frames. Amer J Math, 1983, 105: 59-83.

[6]

Ecker K., Huisken G. Mean curvature evolution of entire graphs. Ann Math, 1989, 130: 453-471.

[7]

Fujimoto H. Osserman R. Nevanlinna theory and minimal surfaces. Geometry V, Minimal Surfaces, 1997, Berlin: Springer-Verlag, 95-151.

[8]

Han X., Li J. The mean curvature flow approach to the symplectic isotopy problem. IMRN, 2005, 26: 1611-1620.

[9]

Hoffman D. A., Osserman R. The Geometry of the Generalized Gauss Map. Memoirs of AMS, No 236, 1980, Providence: Amer Math Soc.

[10]

Huisken G. Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent Math, 1986, 84: 463-480.

[11]

Huisken G. Asymptotic behavior for singularities of the mean curvature flow. J Diff Geom, 1990, 31: 285-299.

[12]

Huisken G., Sinestrari C. Mean curvature flow singularities for mean convex surfaces. Calc Var PDE, 1999, 8: 1-14.

[13]

Huisken G., Sinestrari C. Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math, 1999, 183: 45-70.

[14]

Neves A. Singularities of Lagrangian mean curvature flow: zero-Maslov class case. Invent Math, 2007, 168(3): 449-484.

[15]

Simon L. Lectures on Geometric Measure Theory. Proc Center Math Anal, 1983, Canberra: Australian National Univ Press.

[16]

Smoczyk K. Harnack inequality for the Lagrangian mean curvature flow. Calc Var PDE, 1999, 8: 247-258.

[17]

Smoczyk K. Der Lagrangesche mittlere Kruemmungsfluss. Univ Leipzig (Habil - Schr),102 S. 2000

[18]

Smoczyk K. Angle theorems for the Lagrangian mean curvature flow. Math Z, 2002, 240: 849-883.

[19]

Thomas R, Yau S T. Special Lagrangians, stable bundles and mean curvature flow. math.DG/0104197, 2001

[20]

Wang M. -T. Mean curvature flow of surfaces in Einstein four manifolds. J Diff Geom, 2001, 57: 301-338.

[21]

White B. The nature of singularities in mean curvature flow of mean-convex sets. J Amer Math Soc, 2003, 16: 123-138.

AI Summary AI Mindmap
PDF (181KB)

823

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/