Singularities of symplectic and Lagrangian mean curvature flows
Xiaoli Han , Jiayu Li
Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 283 -296.
Singularities of symplectic and Lagrangian mean curvature flows
In this paper, we study the singularities of the mean curvature flow from a symplectic surface or from a Lagrangian surface in a Käahler-Einstein surface. We prove that the blow-up flow Σs ∞ at a singular point (X0, T0) of a symplectic mean curvature flow Σt or of a Lagrangian mean curvature flow Σt is a nontrivial minimal surface in ℝ4, if Σ−∞ ∞ is connected.
Symplectic surface / holomorphic curve / Lagrangian surface / minimal Lagrangian surface / mean curvature flow
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
Smoczyk K. Der Lagrangesche mittlere Kruemmungsfluss. Univ Leipzig (Habil - Schr),102 S. 2000 |
| [18] |
|
| [19] |
Thomas R, Yau S T. Special Lagrangians, stable bundles and mean curvature flow. math.DG/0104197, 2001 |
| [20] |
|
| [21] |
|
/
| 〈 |
|
〉 |