Singularities of symplectic and Lagrangian mean curvature flows

Xiaoli HAN, Jiayu LI

PDF(181 KB)
PDF(181 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 283-296. DOI: 10.1007/s11464-009-0018-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Singularities of symplectic and Lagrangian mean curvature flows

Author information +
History +

Abstract

In this paper, we study the singularities of the mean curvature flow from a symplectic surface or from a Lagrangian surface in a Kähler-Einstein surface. We prove that the blow-up flow s at a singular point(X0, T0) of a symplectic mean curvature flow Σt or of a Lagrangian mean curvature flow Σt is a nontrivial minimal surface in 4, if - is connected.

Keywords

Symplectic surface / holomorphic curve / Lagrangian surface / minimal Lagrangian surface / mean curvature flow

Cite this article

Download citation ▾
Xiaoli HAN, Jiayu LI. Singularities of symplectic and Lagrangian mean curvature flows. Front Math Chin, 2009, 4(2): 283‒296 https://doi.org/10.1007/s11464-009-0018-4

References

[1]
Chen J, Li J. Mean curvature flow of surface in 4-manifolds. Adv Math, 2001, 163: 287-309
CrossRef Google scholar
[2]
Chen J, Li J. Singularity of mean curvature flow of Lagrangian submanifolds. Invent Math, 2004, 156: 25-51
CrossRef Google scholar
[3]
Chen J, Tian G. Minimal surfaces in Riemannian 4-manifolds. Geom Funct Anal, 1997, 7: 873-916
CrossRef Google scholar
[4]
Cheng S Y, Yau S T. Differential equations on Riemannian manifolds and their geometric applications. Comm Pure Appl Math, 1975, 28(3): 333-354
CrossRef Google scholar
[5]
Chern S S, Wolfson J. Minimal surfaces by moving frames. Amer J Math, 1983, 105: 59-83
CrossRef Google scholar
[6]
Ecker K, Huisken G. Mean curvature evolution of entire graphs. Ann Math, 1989, 130: 453-471
CrossRef Google scholar
[7]
Fujimoto H. Nevanlinna theory and minimal surfaces. In: Osserman R, ed. Geometry V, Minimal Surfaces. Berlin: Springer-Verlag, 1997, 95-151
[8]
Han X, Li J. The mean curvature flow approach to the symplectic isotopy problem. IMRN2005, 26: 1611-1620
CrossRef Google scholar
[9]
Hoffman D A, Osserman R. The Geometry of the Generalized Gauss Map. Memoirs of AMS, No 236. Providence: Amer Math Soc, 1980
[10]
Huisken G. Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent Math, 1986, 84: 463-480
CrossRef Google scholar
[11]
Huisken G. Asymptotic behavior for singularities of the mean curvature flow. J Diff Geom, 1990, 31: 285-299
[12]
Huisken G, Sinestrari C. Mean curvature flow singularities for mean convex surfaces. Calc Var PDE, 1999, 8: 1-14
CrossRef Google scholar
[13]
Huisken G, Sinestrari C. Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math, 1999, 183: 45-70
CrossRef Google scholar
[14]
Neves A. Singularities of Lagrangian mean curvature flow: zero-Maslov class case. Invent Math, 2007, 168(3): 449-484
CrossRef Google scholar
[15]
Simon L. Lectures on Geometric Measure Theory. Proc Center Math Anal, 3. Canberra: Australian National Univ Press, 1983
[16]
Smoczyk K. Harnack inequality for the Lagrangian mean curvature flow. Calc Var PDE, 1999, 8: 247-258
CrossRef Google scholar
[17]
Smoczyk K. Der Lagrangesche mittlere Kruemmungsfluss. Univ Leipzig (Habil- Schr), 102 S. 2000
[18]
Smoczyk K. Angle theorems for the Lagrangian mean curvature flow. Math Z, 2002, 240: 849-883
CrossRef Google scholar
[19]
Thomas R, Yau S T. Special Lagrangians, stable bundles and mean curvature flow. <patent>math.DG/0104197</patent>, 2001
[20]
Wang M-T. Mean curvature flow of surfaces in Einstein four manifolds. J Diff Geom, 2001, 57: 301-338
[21]
White B. The nature of singularities in mean curvature flow of mean-convex sets. J Amer Math Soc, 2003, 16: 123-138
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(181 KB)

Accesses

Citations

Detail

Sections
Recommended

/