![](/develop/static/imgs/pdf.png)
Singularities of symplectic and Lagrangian mean curvature flows
Xiaoli HAN, Jiayu LI
Singularities of symplectic and Lagrangian mean curvature flows
In this paper, we study the singularities of the mean curvature flow from a symplectic surface or from a Lagrangian surface in a Kähler-Einstein surface. We prove that the blow-up flow at a singular point(X0, T0) of a symplectic mean curvature flow Σt or of a Lagrangian mean curvature flow Σt is a nontrivial minimal surface in , if is connected.
Symplectic surface / holomorphic curve / Lagrangian surface / minimal Lagrangian surface / mean curvature flow
[1] |
Chen J, Li J. Mean curvature flow of surface in 4-manifolds. Adv Math, 2001, 163: 287-309
CrossRef
Google scholar
|
[2] |
Chen J, Li J. Singularity of mean curvature flow of Lagrangian submanifolds. Invent Math, 2004, 156: 25-51
CrossRef
Google scholar
|
[3] |
Chen J, Tian G. Minimal surfaces in Riemannian 4-manifolds. Geom Funct Anal, 1997, 7: 873-916
CrossRef
Google scholar
|
[4] |
Cheng S Y, Yau S T. Differential equations on Riemannian manifolds and their geometric applications. Comm Pure Appl Math, 1975, 28(3): 333-354
CrossRef
Google scholar
|
[5] |
Chern S S, Wolfson J. Minimal surfaces by moving frames. Amer J Math, 1983, 105: 59-83
CrossRef
Google scholar
|
[6] |
Ecker K, Huisken G. Mean curvature evolution of entire graphs. Ann Math, 1989, 130: 453-471
CrossRef
Google scholar
|
[7] |
Fujimoto H. Nevanlinna theory and minimal surfaces. In: Osserman R, ed. Geometry V, Minimal Surfaces. Berlin: Springer-Verlag, 1997, 95-151
|
[8] |
Han X, Li J. The mean curvature flow approach to the symplectic isotopy problem. IMRN2005, 26: 1611-1620
CrossRef
Google scholar
|
[9] |
Hoffman D A, Osserman R. The Geometry of the Generalized Gauss Map. Memoirs of AMS, No 236. Providence: Amer Math Soc, 1980
|
[10] |
Huisken G. Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent Math, 1986, 84: 463-480
CrossRef
Google scholar
|
[11] |
Huisken G. Asymptotic behavior for singularities of the mean curvature flow. J Diff Geom, 1990, 31: 285-299
|
[12] |
Huisken G, Sinestrari C. Mean curvature flow singularities for mean convex surfaces. Calc Var PDE, 1999, 8: 1-14
CrossRef
Google scholar
|
[13] |
Huisken G, Sinestrari C. Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math, 1999, 183: 45-70
CrossRef
Google scholar
|
[14] |
Neves A. Singularities of Lagrangian mean curvature flow: zero-Maslov class case. Invent Math, 2007, 168(3): 449-484
CrossRef
Google scholar
|
[15] |
Simon L. Lectures on Geometric Measure Theory. Proc Center Math Anal, 3. Canberra: Australian National Univ Press, 1983
|
[16] |
Smoczyk K. Harnack inequality for the Lagrangian mean curvature flow. Calc Var PDE, 1999, 8: 247-258
CrossRef
Google scholar
|
[17] |
Smoczyk K. Der Lagrangesche mittlere Kruemmungsfluss. Univ Leipzig (Habil- Schr), 102 S. 2000
|
[18] |
Smoczyk K. Angle theorems for the Lagrangian mean curvature flow. Math Z, 2002, 240: 849-883
CrossRef
Google scholar
|
[19] |
Thomas R, Yau S T. Special Lagrangians, stable bundles and mean curvature flow. <patent>math.DG/0104197</patent>, 2001
|
[20] |
Wang M-T. Mean curvature flow of surfaces in Einstein four manifolds. J Diff Geom, 2001, 57: 301-338
|
[21] |
White B. The nature of singularities in mean curvature flow of mean-convex sets. J Amer Math Soc, 2003, 16: 123-138
CrossRef
Google scholar
|
/
〈 |
|
〉 |